登录
首页 » Others » 凸优化在信号处理与通信中的应用Convex Optimization in Signal Processing and Communications

凸优化在信号处理与通信中的应用Convex Optimization in Signal Processing and Communications

于 2020-12-10 发布
0 400
下载积分: 1 下载次数: 10

代码说明:

凸优化理论在信号处理以及通信系统中的应用 比较经典的通信系统凸优化入门教程ContentsList of contributorspage IxPrefaceAutomatic code generation for real- time convex optimizationJacob Mattingley and stephen Boyd1.1 Introduction1.2 Solvers and specification languages61. 3 Examples121. 4 Algorithm considerations1.5 Code generation261.6 CVXMOD: a preliminary implementation281.7 Numerical examples291. 8 Summary, conclusions, and implicationsAcknowledgments35ReferencesGradient-based algorithms with applications to signal-recoveryproblemsAmir beck and marc teboulle2.1 Introduction422.2 The general optimization model432.3 Building gradient-based schemes462. 4 Convergence results for the proximal-gradient method2.5 A fast proximal-gradient method2.6 Algorithms for l1-based regularization problems672.7 TV-based restoration problems2. 8 The source-localization problem772.9 Bibliographic notes83References85ContentsGraphical models of autoregressive processes89Jitkomut Songsiri, Joachim Dahl, and Lieven Vandenberghe3.1 Introduction893.2 Autoregressive processes923.3 Autoregressive graphical models983. 4 Numerical examples1043.5 Conclusion113Acknowledgments114References114SDP relaxation of homogeneous quadratic optimization: approximationbounds and applicationsZhi-Quan Luo and Tsung-Hui Chang4.1 Introduction1174.2 Nonconvex QCQPs and sDP relaxation1184.3 SDP relaxation for separable homogeneous QCQPs1234.4 SDP relaxation for maximization homogeneous QCQPs1374.5 SDP relaxation for fractional QCQPs1434.6 More applications of SDP relaxation1564.7 Summary and discussion161Acknowledgments162References162Probabilistic analysis of semidefinite relaxation detectors for multiple-input,multiple-output systems166Anthony Man-Cho So and Yinyu Ye5.1 Introduction1665.2 Problem formulation1695.3 Analysis of the SDr detector for the MPsK constellations1725.4 Extension to the Qam constellations1795.5 Concluding remarks182Acknowledgments182References189Semidefinite programming matrix decomposition, and radar code design192Yongwei Huang, Antonio De Maio, and Shuzhong Zhang6.1 Introduction and notation1926.2 Matrix rank-1 decomposition1946.3 Semidefinite programming2006.4 Quadratically constrained quadratic programming andts sdp relaxation201Contents6.5 Polynomially solvable QCQP problems2036.6 The radar code-design problem2086.7 Performance measures for code design2116.8 Optimal code design2146.9 Performance analysis2186.10 Conclusions223References226Convex analysis for non-negative blind source separation withapplication in imaging22Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi, and Yue Wang7.1 Introduction2297.2 Problem statement2317.3 Review of some concepts in convex analysis2367.4 Non-negative, blind source-Separation criterion via CAMNS2387.5 Systematic linear-programming method for CAMNS2457.6 Alternating volume-maximization heuristics for CAMNS2487.7 Numerical results2527.8 Summary and discussion257Acknowledgments263References263Optimization techniques in modern sampling theory266Tomer Michaeli and yonina c. eldar8.1 Introduction2668.2 Notation and mathematical preliminaries2688.3 Sampling and reconstruction setup2708.4 Optimization methods2788.5 Subspace priors2808.6 Smoothness priors2908.7 Comparison of the various scenarios3008.8 Sampling with noise3028. 9 Conclusions310Acknowledgments311References311Robust broadband adaptive beamforming using convex optimizationMichael Rubsamen, Amr El-Keyi, Alex B Gershman, and Thia Kirubarajan9.1 Introduction3159.2 Background3179.3 Robust broadband beamformers3219.4 Simulations330Contents9.5 Conclusions337Acknowledgments337References337Cooperative distributed multi-agent optimization340Angelia Nedic and asuman ozdaglar10.1 Introduction and motivation34010.2 Distributed-optimization methods using dual decomposition34310.3 Distributed-optimization methods using consensus algorithms35810.4 Extensions37210.5 Future work37810.6 Conclusions38010.7 Problems381References384Competitive optimization of cognitive radio MIMO systems via game theory387Gesualso Scutari, Daniel P Palomar, and Sergio Barbarossa11.1 Introduction and motivation38711.2 Strategic non-cooperative games: basic solution concepts and algorithms 39311.3 Opportunistic communications over unlicensed bands411.4 Opportunistic communications under individual-interferenceconstraints4151.5 Opportunistic communications under global-interference constraints43111.6 Conclusions438Ackgment439References43912Nash equilibria: the variational approach443Francisco Facchinei and Jong-Shi Pang12.1 Introduction44312.2 The Nash-equilibrium problem4412. 3 EXI45512.4 Uniqueness theory46612.5 Sensitivity analysis47212.6 Iterative algorithms47812.7 A communication game483Acknowledgments490References491Afterword494Index49ContributorsSergio BarbarossaYonina c, eldarUniversity of rome-La SapienzaTechnion-Israel Institute of TechnologyHaifaIsraelAmir beckTechnion-Israel instituteAmr El-Keyiof TechnologyAlexandra universityHaifEgyptIsraelFrancisco facchiniStephen boydUniversity of rome La sapienzaStanford UniversityRomeCaliforniaItalyUSAAlex b, gershmanTsung-Han ChanDarmstadt University of TechnologyNational Tsing Hua UniversityDarmstadtHsinchuGermanyTaiwanYongwei HuangTsung-Hui ChangHong Kong university of scienceNational Tsing Hua Universityand TechnologyHsinchuHong KongTaiwanThia KirubarajanChong-Yung chiMcMaster UniversityNational Tsing Hua UniversityHamilton ontarioHsinchuCanadaTaiwanZhi-Quan LuoJoachim dahlUniversity of minnesotaanybody Technology A/sMinneapolisDenmarkUSAList of contributorsWing-Kin MaMichael rebsamenChinese University of Hong KongDarmstadt UniversityHong KonTechnologyDarmstadtAntonio de maioGermanyUniversita degli studi di napoliFederico iiGesualdo scutariNaplesHong Kong University of Sciencealyand TechnologyHong KongJacob MattingleyAnthony Man-Cho SoStanford UniversityChinese University of Hong KongCaliforniaHong KongUSAJitkomut songsinTomer michaeliUniversity of californiaTechnion-Israel instituteLoS Angeles. CaliforniaogyUSAHaifaMarc teboulleTel-Aviv UniversityAngelia NedicTel-AvUniversity of Illinois atIsraelUrbana-ChampaignInoSLieven VandenbergheUSAUniversity of CaliforniaLos Angeles, CaliforniaUSAAsuman OzdaglarMassachusetts Institute of TechnologyYue WangBoston massachusettsVirginia Polytechnic InstituteUSAand State UniversityArlingtonDaniel p palomarUSAHong Kong University ofScience and TechnologyYinyu YeHong KongStanford UniversityCaliforniaong-Shi PangUSAUniversity of illinoisat Urbana-ChampaignShuzhong zhangIllinoisChinese university of Hong KongUSAHong KongPrefaceThe past two decades have witnessed the onset of a surge of research in optimization.This includes theoretical aspects, as well as algorithmic developments such as generalizations of interior-point methods to a rich class of convex-optimization problemsThe development of general-purpose software tools together with insight generated bythe underlying theory have substantially enlarged the set of engineering-design problemsthat can be reliably solved in an efficient manner. The engineering community has greatlybenefited from these recent advances to the point where convex optimization has nowemerged as a major signal-processing technique on the other hand, innovative applica-tions of convex optimization in signal processing combined with the need for robust andefficient methods that can operate in real time have motivated the optimization commu-nity to develop additional needed results and methods. The combined efforts in both theoptimization and signal-processing communities have led to technical breakthroughs ina wide variety of topics due to the use of convex optimization This includes solutions tonumerous problems previously considered intractable; recognizing and solving convex-optimization problems that arise in applications of interest; utilizing the theory of convexoptimization to characterize and gain insight into the optimal-solution structure and toderive performance bounds; formulating convex relaxations of difficult problems; anddeveloping general purpose or application-driven specific algorithms, including thosethat enable large-scale optimization by exploiting the problem structureThis book aims at providing the reader with a series of tutorials on a wide varietyof convex-optimization applications in signal processing and communications, writtenby worldwide leading experts, and contributing to the diffusion of these new developments within the signal-processing community. The goal is to introduce convexoptimization to a broad signal-processing community, provide insights into how convexoptimization can be used in a variety of different contexts, and showcase some notablesuccesses. The topics included are automatic code generation for real-time solvers, graphical models for autoregressive processes, gradient-based algorithms for signal-recoveryapplications, semidefinite programming(SDP)relaxation with worst-case approximationperformance, radar waveform design via SDP, blind non-negative source separation forimage processing, modern sampling theory, robust broadband beamforming techniquesdistributed multiagent optimization for networked systems, cognitive radio systems viagame theory, and the variational-inequality approach for Nash-equilibrium solutionsPrefaceThere are excellent textbooks that introduce nonlinear and convex optimization, providing the reader with all the basics on convex analysis, reformulation of optimizationproblems, algorithms, and a number of insightful engineering applications. This book istargeted at advanced graduate students, or advanced researchers that are already familiarwith the basics of convex optimization. It can be used as a textbook for an advanced graduate course emphasizing applications, or as a complement to an introductory textbookthat provides up-to-date applications in engineering. It can also be used for self-study tobecome acquainted with the state of-the-art in a wide variety of engineering topicsThis book contains 12 diverse chapters written by recognized leading experts worldwide, covering a large variety of topics. Due to the diverse nature of the book chaptersit is not possible to organize the book into thematic areas and each chapter should betreated independently of the others. a brief account of each chapter is given nextIn Chapter 1, Mattingley and Boyd elaborate on the concept of convex optimizationin real-time embedded systems and automatic code generation. As opposed to genericsolvers that work for general classes of problems, in real-time embedded optimization thesame optimization problem is solved many times, with different data, often with a hardreal-time deadline. Within this setup the authors propose an automatic code-generationsystem that can then be compiled to yield an extremely efficient custom solver for theproblem familyIn Chapter 2, Beck and Teboulle provide a unified view of gradient-based algorithmsfor possibly nonconvex and non-differentiable problems, with applications to signalrecovery. They start by rederiving the gradient method from several different perspectives and suggest a modification that overcomes the slow convergence of the algorithmThey then apply the developed framework to different image-processing problems suchas e1-based regularization, TV-based denoising, and Tv-based deblurring, as well ascommunication applications like source localizationIn Chapter 3, Songsiri, Dahl, and Vandenberghe consider graphical models for autore-gressive processes. They take a parametric approach for maximum-likelihood andmaximum-entropy estimation of autoregressive models with conditional independenceconstraints, which translates into a sparsity pattern on the inverse of the spectral-densitymatrix. These constraints turn out to be nonconvex. To treat them the authors proposea relaxation which in some cases is an exact reformulation of the original problem. Theproposed methodology allows the selection of graphical models by fitting autoregressiveprocesses to different topologies and is illustrated in different applicationsThe following three chapters deal with optimization problems closely related to SDPand relaxation techniquesIn Chapter 4, Luo and Chang consider the SDP relaxation for several classes ofquadratic-optimization problems such as separable quadratically constrained quadraticprograms(QCQPs)and fractional QCQPs, with applications in communications and signal processing. They identify cases for which the relaxation is tight as well as classes ofquadratic-optimization problems whose relaxation provides a guaranteed, finite worstcase approximation performance. Numerical simulations are carried out to assess theefficacy of the SDP-relaxation approach

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 测地距离—来自science杂志
    这是一篇来自science杂志的论文,非常经典!介绍了测地距离在流行降维中的应用。Scientists working with large volumes of high-dimensional data, such as globalclimate patterns, stellar spectra, or human gene distributions, regularly confrontthe problem of dimensionality reduction: Þnding meaningful low-dimensionalstructures hidden in
    2020-12-10下载
    积分:1
  • 用友写狗工具3.0,UDW3.0
    用友写狗工具3.0,UDW3.0
    2020-11-28下载
    积分:1
  • mfc职员信息管理系统(所有源代码)
    东南大学计算机综合课程设计作品 这是我们进大二时自己做的 是基于mfc对话框的管理系统 通过部门和职员链表类完成 有保存读取和另存为功能 职员和部门类分别有添加修改删除功能 还有设置主界面菜单和主界面背景色和文本框底色和文本框字体色 以及查询功能 能考虑到的基本都做了一下 希望给大家作作参考">东南大学计算机综合课程设计作品 这是我们进大二时自己做的 是基于mfc对话框的管理系统 通过部门和职员链表类完成 有保存读取和另存为功能 职员和部门类分别有添加修改删除功能 还有设置主界面菜单和主界面背景 [更多]
    2020-12-05下载
    积分:1
  • PCM_FSK_ASK_DPSK仿真源码(matlab实现)
    通信原理实验课上写的代码,PCM部分参考了网络部分的资源,做了些改变。基本上包含了PCM编码,FSK,ASK,DPSK的调制与解调。有助于大家理解通信系统。代码用MATLAB编写,希望大家能够多提意见。
    2020-12-01下载
    积分:1
  • VC音视频解码技术及实践源码
    主要内容包括:数字视频技术基础,JPEG编解码技术与实现,MPEG-1编解码技术与实现,MPEG-2压缩编码标准,MPEG-4压缩码技术与实现,MPEG-4实用源代码分析,H.263视频压缩编码技术与实现,H.264视频压缩编码技术与实现,音、视频网络传送技术等
    2021-05-06下载
    积分:1
  • 图像分割分形算法
    图像分割算法--分形算法,包括完整的matlab代码,以及包含代码的算法的相关论文。以及用于测试的图像
    2020-11-27下载
    积分:1
  • 斑马ZEBRA ZPL指令打印所需SMT.ZEBRA.dll以及中文打印FNTHEX32.DLL
    该资源包含斑马打印帮助类ZebraPrinter的SMT.ZEBRA.DLL以及打印中文所需的FNTHEX32.DLL。
    2020-11-27下载
    积分:1
  • 雷达信号检测matlab
    雷达信号检测matlab程序,函数齐全,并且带有实际效果图。可以进行充分比对。
    2020-12-06下载
    积分:1
  • 基于FPGA的数字通信实现多路数据时分复用和解复用系统系统
    本文档介绍了一种基于FPGA的数字通信多路时分复用和解复用系统,使用硬件描述语言很好的实现了系统功能。第2页共63页AbstractThe system is designed for data multiplexed and de-multiplexed. It is based on TDMThe systern includes the transmitter and the receiver. They are implemented mainly by FPGaThere are three inputs in the transmission system: data from A/converter, DIPI and DIP2The three channels are out serially and time-divisional under the FPgas control. The FPGain the transmitter is divided into four modules which are frequency divider, Barker generator,data multiplexer and voltage display. voltage display is used for processing the data convertedy ADC and sending it to the LED. The serial data are serial shifted into the FPGa in thereceiver. Bit-synchronize and frame-synchronize are both picked up, and then de-multiplexThe FPGA in the receiver is divided into three modules which are digital PLL, datade-multiplexer and voltage display. The transmitter will multiplex four ways of 8-bit paralleldata. The first way is adC data, the second and the third way is generated by dip-key. Theother is Barker code used for frame synchronizing. The receiver will maintain the bitsynchronizing, recognize one frame and de-multiplex three ways data. The essay will discussthe design progress, the programming idea and some problems. Works have to be done by thedesigner are: Specify all system components, Make system specification, Draw systemschematics, Write RTL code according the schematics, Synthesis and simulate the rtl codeDesign the PCBS, Validate the functions of the FPGA on-line.Keywords: DPLL; Frame-synchronize; TDM; Verilog HDl; Serial A/D convert;第3页共63页目录引1数字复接系统简介52数字复接方法及方式2.1数字复接的方法…中中·2.2数字复接的方式………3系统原理和各模块设计………………………63.1系统原理及框图…3.2发端系统设计…3.3收端系统设计…···中··中··中····中·,中………93.4FPGA的设计流程“····“:*·············=·······*·*··3.4.1设计输入···“··++··+··*+··+··+++*···++++·*·+·++34.2设计综合……………………123.4.3仿真验证123.4.4设计实现……123.4.5时序分析123.5发端FPGA设计………………………133.5.1分频模块…翻……143.5.2复接模块……………………………………153.5.3显示模块……………………163.5.4编译与仿伤真…………………183.6收端FPGA设计……………………………………………………193.6.1数字锁相模块…………···→····;··中·······中···········→··············203.6.2解复用模块…··++·*···中+“··“++………………………213.6.3显示模块………………………………………………223.6.4编译与仿真………………………………223.7数字锁相环原理及设计……………………………2338串行AD工作原理………………2539并行D/A的工作原理…263.10 Altera flex10K10介绍………………………………………………………………274系统调试…………………………………………………325 Quartus||软件及 Ver log语言简介…………325.10 artus I软件简介……………………………………………………325.2 Verilog语言简介……………………………………………………………34第4页共63页6结论····“4··+·→··*·*··“······+“·+····“······“··+·+“+·…“*·.·+··+“·+·+·*··…………35谢辞36参考文献·a···.········和··::··中.事…37附录…38docn豆丁www.oocin.com第5页共63页引言数字复接、分接技术发展到80年代已经趋于成熟,形成了完善的EI、T系列。它使得多路低速信号可以在髙速信道中传输,同时提髙信道的利用率。PLD/FPGA是电子设计领域中最具活力和发展前途的一项技术,它的影响丝毫不亚于70年代单片机的发明和使用。可以毫不夸张的讲,PID/FPGA能完成任何数字器件的功能,上至高性能CP,下至简单的74电路,都可以用PLD/FPGA来实现。PLD/FPGA如同一张白纸或是一堆积木,工程师可以通过传统的原理图输入法,或是硬件描述语言自由的设计一个数字系统。通过软件仿真,我们可以事先验证设计的正确性。在PCB完成以后,还可以利用PLD/FPGA的在线修改能力,随时修改设计而不必改动硬件电路。使用PLD/FGA来开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性。,PLD/FGA的这些优点使得PLD/FPGA技术在90年代以后得到飞速的发展,同时也大大推动了EDA软件和硬件描述语言的进步。本设计主要利用了FPGA及 Verilog hdl语言来设计数字复、接分接系统。数字复接系统简介在数字通信网中,为了扩大传输容量和提高传输效率常常需要把若干个低速数字信号合并成为一个高速数字信号,然后再通过高速信道传输,这就是所谓的数字复接技术。数字复接是一种已经非常成熟的技术,广泛地应用于无线通信、光通信和微波接力通信。图1-1数字复接系统方框饜图1-1所示,数字复接系统包括数字复接器( digital multiplexer)和数字分接时钟「定时同定时步复分日恢接复器( digital de- multiplexer)两部分。数字复接器是把两个或多个低速的支路数字信号按照时分复用方式合并成为一路高速的合路数字信号的设备;数字分接器是把合路数字信号分解为原来的支路数字信号的设备。数字复接器是由定时、调整和复接单元所组成;数字分接器是由同步、定时、分接和恢复单元所组成。定时单元给设备提供统一的基准时间信号,同步单元给分接器提供与复接器基准时间同步的时间信号,调整单元负责同步输入的各支路信号。恢复单元与调整单元相对,负贵把分接出来的各支路信号复原第6页共63页2数字复接方法及方式2.1数字复接的方法数字复接的方法主要有按位复接、按字复接和按帧复接三种(1)按位复接按位复接的方法是每次只复接每个支路的·位码,复接后,码序列中的第·位表示第一路中的第一位码;第二位表示第二路的第一位码;以此类推,第N位表示第N路的第一位码。这N位码形成第一时隙。同样,第二时隙是有每路的第二位码复接而成。这种复接方法的特点是设备简单、只需小容量存储,易于实现(2)按字复接按字复接就是每次复接支路的一个字或字节。复接后的码顺序是每个封隙为一路n位码。它的特点是利于多路合成和处理,但要求有较大的存储容量,使得电路较为复杂(3)按帧复接这种方法是每次复接一个之路的一帧数码,它的特点是复接时不破坏原来的帧结构,有利于交换,但要求有更大的存储容量。22数字复接的方式按照复接时各低速信号的情况,复接方式可分为同步复接、异步复接与准同步复接。(1)同步复接同步复接被复接的各个支路信号在时间上是完全同步的。在实际应用中,由于各个支路信号到达的时间不一样,造成支路间的码位相位不同,使得信息不能被正确复接。因此需要对支路进行相位调整。在复接时,要插入帧同步码及其它的业务码。(2)异步复接将没有统一标称频率的不同支路数字信号进行复接的方式成为异步复接。在数字通信中广泛采用这种复接方式。(3)准同步复接准同步复接是指参与复接的各个低速信号使用各自的时钟,但各支路的时钟需要在定的容差范围内。准同步复接实际上是在同步复接的基础上增加了码速调整功能3系统原理和各模块设计3.1系统原理及框图首先介绍系统的工作过程。此数字通信系统分为发端和收端两部分。在发端,FPGA对A①D变换数据、DIP1数据和DIP2数据插入帧同步码,形成一帧,对此帧按位时分复用并串行发送出去。同时,A/D输入端的模拟电压值将通过FPGA的处理,显示在七段数码管上。在收端,FPGA首先从串行码中提取位时钟,然后识别帧同步。当识别出帧同步后,FPGA解复用三路并行码,分别将这三路并行码送到后面的D/A变换器、LED1和LED2同时,第一路并行码通过FGA的处理,显示到七段数码管上。传输帧结构如图3-1所示:第7页共63页帧同步第一路第二路|第三路图3-1传输帧结构总系统框图如图3-2所示:七段数码管七段数码管A/DD/A信道DI P1立FPGA收端FPGALED 1DIP2LED2图3-2总系统框图3.2发端系统设计图3-3是发端系统方框图七数码簣豆丁A/D信道DP1愛端FPGADIP2图3-3发端系统方框图如图3-3所示,发端有三路信号:A/D变换信号、拨码开关1和拨码开关2产生的8位信码。AD变换的信码经过FPGA处理显示到七段译码管上,它代表变换前模拟信号的电压值。由于三路信号都是静态信号,因此输入不用进行码速变挨和码速调轄。输出信号的码速率为256Kbps。发端电路在做PCB时需要单层布线,因此将发端系统板倣成三块小板,分为三个图,分别是发端主图、AD变换图和LED显示图。发端主图如34所示,以发端FPGA为核心,其它功能块逐一实现。为了FGA运行的稳定,要在其周围加入6个滤波电容,电容值为0.1uF。拨码开关与排阻共同构成八位信码,分别接到FPGA的8个I/0端口。复位电路是系统正常运行的必要部分,它由按键开关,电解电容和电阻构成。主图板与AD变换板、LED显示板之间用插针和电线连接。这些插针和电线将为A/D变换板和LED显示第8页共63页板提供电源和通信路径。此外,FPGA还需要配置电路。配置电路在开杌时将配置文件载入到FPGA中,FPGA才可以工作。配置电路由上拉电阻和插座组成,其中,五个端口接到FGA五个配置引脚,他们是:DATA0、 sTATuS、 nCONFIG、 CONF DONE与DCLK。3图AA399999温899998旨若起Ed kDYnizisr含已四=图3-4发端主图原理图A/D变换图如图35所示,要说明的是,这里没有采用并行A/D,而是采用了串行A/D,这样可以节省FPGA的管脚。我使用的ADC型号是TC549。TLC549转换输入端模拟量为数字量,为FPGA提供串行数据。这块板的电源由主图板提供,电源端接到主图板的电源端。TLC549需要一片0.1uF的陶瓷电容为芯片的电源端滤波。在做PCB时,这片电容应靠近芯片的VCC与GND。TLC549的模拟输入量有电位器分压和外部输入,通过单刀双掷开关选择。外部输入的模拟量可以是信号源输出,音频输入等。AA「区YcAy图3-5AD变换图第9页共63页LED显示图如图3-6所示,我用五位LED显示模拟电压值。它可以提供0.0001的显示精度。这五位LED由一位独立LED和一个四LED组组成。这五个LED采用扫描方式显示。扫描显示是LED显示的常用方法。通过五个PNP管控制五个LED分时发光,时隙为32ms。在此时隙下,人眼不会察觉到LED分别点亮,而是同时在亮。此法不仅节省七段译码驱动芯片和FPGA的管脚,而且节约电能。小数点的位置固定不变:因此只需将独立LED的小数点设计为常亮。LED数码管采用共阳极,公共端接PP发射极,PNP集电极接电源,PNP的导通由FPGA控制。七段译码芯片采用DM74LS47,它是一片驱动共阳极LED数码管的芯片。同样,在这片芯片的VCC与GND之间加入0.1uF陶瓷滤波电容和essOyNC 5v In图3-6LED显示图3.3收端系统设计收端系统框图如图3-7所示七段数码管D/A信道收端FPGAED1LED2图3-7收端系统框图
    2020-12-03下载
    积分:1
  • H5 牛牛源码 微信牛牛 带后台控制12345
    欢迎来测,H5的牛牛 多种玩法 带后台控制的, 搭建起就能运行的完整代码。
    2020-11-29下载
    积分:1
  • 696516资源总数
  • 106430会员总数
  • 0今日下载