登录
首页 » Others » NOIP近7年真题(含测试数据和测试软件)

NOIP近7年真题(含测试数据和测试软件)

于 2020-12-12 发布
0 141
下载积分: 1 下载次数: 1

代码说明:

全国青少年信息学奥林匹克联赛(National Olympiad in Informatics in Provinces,简称NOIP)自1995年至2017年已举办23次。每年由中国计算机学会统一组织。 NOIP在同一时间、不同地点以各省市为单位由特派员组织。全国统一大纲、统一试卷。初、高中或其他中等专业学校的学生可报名参加联赛。联赛分初赛和复赛两个阶段。初赛考察通用和实用的计算机科学知识,以笔试形式进行。复赛为程序设计,须在计算机上调试完成。参加初赛者须达到一定分数线后才有资格参加复赛。联赛分普及组和提高组两个组别,难度不同,分别面向初中和高中阶段的学生。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • OFDM 和 FBMC 的功率谱仿真(matlab)
    【实例简介】用matlab对OFDM(正交频分复用)和FBMC(滤波器组多载波)的功率谱进行仿真,含代码和仿真报告。 对OFDM和FBMC的功率谱进行仿真,加深对OFDM和FBMC的理解,熟悉其系统原理构成。 (The power spectrum density of ofdm and fbmc is simulated to deepen the understanding of ofdm and fbmc system. Familiar with the principle and constitution of ofdm and fbmc system.)
    2021-11-07 00:39:10下载
    积分:1
  • 代视频压缩码标准(H265 264两本书)
    新一代高效视频编码H.265HEVC原理、标准与实现 [万帅,杨付正 编著] 2014年版新一代视频压缩编码标准H.264(毕厚杰) 此书带书签
    2021-05-06下载
    积分:1
  • 《超智能体》
    通过理解智能,学习如何学习。机器学习 深度学习的入门资料。
    2020-12-12下载
    积分:1
  • PSAT工具软件
    概述PSAT( Power System Analysis Toolbox),中文翻译为电力系统分析软件包,包含了:PF-潮流计算;CPF-连续潮流;OPF-最优潮流;SSSA-小扰动分析;TDS-时域仿真;GUI-用户人机界面;GNE-自定义模型等功能。经过验证,该工具包已经可以计算上千节点规模的系统。而且该软件包源代码完全公开,因此用户可以根据自己的研究兴趣编写修改相应源代码实现研究目的。同时, 依托于Matlab 的强大计算功能以及丰富的控制、信号处理、鲁棒控制、模糊控制等工具箱, 使得PSAT 可以把控制科学、信号处理等方面的新思想与电力系统的传统仿真计算有机地结合起来[1]。系统
    2020-12-03下载
    积分:1
  • 基于神经网络的身份证号码识别算法
    这是我自行编写的基于神经网路的身份证号码识别算法,内涵身份证号码训练库,身份证字符分割,字符识别算法,并且提供完整的算法实现说明文档,希望能够给有需要的朋友提供帮助。(因涉及个人信息,只提供若干处理后的身份证照片)
    2020-11-28下载
    积分:1
  • 《MATLAB R2016a通信系统建模与仿真28个案例分析》源码.zip
    《MATLAB R2016a通信系统建模与仿真28个案例分析》源码.zip
    2020-04-28下载
    积分:1
  • 四川大学历年考研C语言试及答案
    四川大学历年考研C语言试题及答案
    2020-12-07下载
    积分:1
  • MFC实现FTP上传下载文件的客户端和服务器
    MFC实现的利用ftp上传和下载文件的完整程序代码,包括客户端和服务器端,希望能够给需要的人以参考!
    2020-12-06下载
    积分:1
  • Android基于wifi模块的局域网聊天以及文件传输app
    一款基于wifi模块的局域网实时聊天以及文件互传的安卓app,能实现热点创建,热点连接,文件传输,实时通讯等功能。
    2020-12-01下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载