登录
首页 » matlab » Relevance-Vector-Machine

Relevance-Vector-Machine

于 2021-03-23 发布
0 203
下载积分: 1 下载次数: 4

代码说明:

说明:  相关向量机(Relevance Vector Machine,简称RVM)是Micnacl E.Tipping于2000年提出的一种与SVM(Support Vector Machine)类似的稀疏概率模型,是一种新的监督学习方法。 它的训练是在贝叶斯框架下进行的,在先验参数的结构下基于主动相关决策理论(automatic relevance determination,简称ARD)来移除不相关的点,从而获得稀疏化的模型。在样本数据的迭代学习过程中,大部分参数的后验分布趋于零,与预测值无关,那些非零参数对应的点被称作相关向量(Relevance Vectors),体现了数据中最核心的特征。同支持向量机相比,相关向量机最大的优点就是极大地减少了核函数的计算量,并且也克服了所选核函数必须满足Mercer条件的缺点。(Relevance Vector Machine (RVM) is a sparse probability model similar to SVM (Support Vector Machine) proposed by Micnacl E. Tipping in 2000. It is a new supervised learning method. Its training is carried out under the Bayesian framework. Under the structure of prior parameters, it is based on Automatic Relevance Determination (ARD) to remove the irrelevant points, so as to obtain the sparse model. In the iterative learning process of sample data, the posterior distribution of most parameters tends to zero, which is independent of the predicted value. The points corresponding to non-zero parameters are called Relevance Vectors, which represent the most core features of the data. Compared with support vector machine, the biggest advantage of correlation vector machine is that it greatly reduces the computation amount of kernel function, and also overcomes the shortcoming that the selected kernel function must meet Mercer's condition.)

文件列表:

Relevance-Vector-Machine\demo.m, 811 , 2019-07-05
Relevance-Vector-Machine\func\computeKM.m, 540 , 2019-07-05
Relevance-Vector-Machine\func\computePretIndex.m, 637 , 2019-07-05
Relevance-Vector-Machine\func\generateData.m, 631 , 2019-07-05
Relevance-Vector-Machine\func\plottestingResult.m, 1327 , 2019-07-05
Relevance-Vector-Machine\func\plottrainingResult.m, 1222 , 2019-07-05
Relevance-Vector-Machine\func\rvm_test.m, 989 , 2019-07-05
Relevance-Vector-Machine\func\rvm_train.m, 2353 , 2019-07-05
Relevance-Vector-Machine\img\img1.png, 27149 , 2019-07-05
Relevance-Vector-Machine\img\img2.png, 46519 , 2019-07-05
Relevance-Vector-Machine\README.md, 1087 , 2019-07-05
Relevance-Vector-Machine\refs\SB2_Manual.pdf, 133380 , 2019-07-05
Relevance-Vector-Machine\refs\Tipping_2001_Sparse Bayesian learning and the relevance vector machine.pdf, 958100 , 2019-07-05
Relevance-Vector-Machine\refs\Tipping_Faul_2003_Fast marginal likelihood maximisation for sparse Bayesian models.pdf, 228209 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\licence.txt, 15122 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\Readme.txt, 2649 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_ControlSettings.m, 4426 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_Diagnostic.m, 3714 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_FormatTime.m, 1579 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_FullStatistics.m, 5816 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_Initialisation.m, 7221 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_Likelihoods.m, 2161 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_Manual.pdf, 133380 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_ParameterSettings.m, 3053 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_PosteriorMode.m, 6200 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_PreProcessBasis.m, 1835 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_Sigmoid.m, 1113 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SB2_UserOptions.m, 5715 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SparseBayes.m, 24447 , 2019-07-05
Relevance-Vector-Machine\SB2_Release_200\SparseBayesDemo.m, 9463 , 2019-07-05
Relevance-Vector-Machine\func, 0 , 2020-05-13
Relevance-Vector-Machine\img, 0 , 2020-05-13
Relevance-Vector-Machine\refs, 0 , 2020-05-13
Relevance-Vector-Machine\SB2_Release_200, 0 , 2020-05-13
Relevance-Vector-Machine, 0 , 2020-05-13

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • zhoujiufanshe
    说明:  啁啾光纤光栅的程序,反射谱情形,很不错。(Chirped fiber grating process, reflection spectra of the situation, very good.)
    2010-03-29 21:27:28下载
    积分:1
  • data4_11sudu
    增广递推最小二乘法系统辨识,包括阶次判定的过程(System identification, order determination)
    2012-09-11 10:50:23下载
    积分:1
  • 4
    说明:  循环平稳理论相关:循环互相关谱的源程序(matlab源代码)(cyclostationary related)
    2011-12-12 14:39:56下载
    积分:1
  • 802.3-2012_section4
    IEEE 802.3 - 2012 Section Four IEEE Standard for Ethernet
    2015-04-03 09:46:03下载
    积分:1
  • ICA-wind-prediction
    采用最先进的殖民竞争算法Imperialist competition algorithm优化BP神经网络的初始权值、阈值,进行风电功率预测,带数据和实例,ica为主程序(Using the most advanced colonial competitive algorithm Imperialist competition algorithm to optimize the initial weights of BP neural network, threshold, carry wind power prediction with data and examples, ica-based program)
    2020-11-26 18:49:31下载
    积分:1
  • ofdmr
    模拟OFDM体制的数字电视信号DVB-T的接收全过程,包括下变频、D/A转换、滤波、星座解调等。。。很实用!(Simulated OFDM system, DVB-T digital TV signal reception of the entire process, including down-conversion, D/A conversion, filtering, demodulation and other constellations. . . It works!)
    2010-07-21 11:37:58下载
    积分:1
  • auto_group
    It just stands for the number of task could use this autogroup.
    2014-08-14 23:48:52下载
    积分:1
  • 2D-MUSIC
    近场源多参数估计2D-MUSIC算法(角度和距离估计)仿真分析(Simulation and analysis of 2d-music algorithm for multi parameter estimation of near field sources)
    2021-03-19 10:59:19下载
    积分:1
  • chengxu
    通过滑动取相关值最后求最大值,找去最佳的样值抽样时刻,完成时间估计。这是一些基础的程序 (Through the sliding value of the final order to check the relevant maximum, to the best kind to find the value of sampling time, the estimated completion time. These are the basis of the procedures)
    2009-05-26 18:46:47下载
    积分:1
  • rectifier3phase
    a 3 phase rectifier ckt matlab simulink model
    2012-08-24 13:10:51下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载