登录
首页 » Others » QT 图片三维立体滑动效果

QT 图片三维立体滑动效果

于 2021-05-06 发布
0 259
下载积分: 1 下载次数: 2

代码说明:

qt实现的pictureflow, 可以实现一类似手机上的滑动效果的功能,支持投影及三维旋转。在此基础上做了修改,可以实现背景透明,效果很酷炫。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • haar人脸 人眼检测 MATLAB
    用haar算法,在MATLAB中实现对图像库中图片的自动检测人脸以及人眼并标记,注释详细。
    2020-12-08下载
    积分:1
  • STM32F103C8T6+USBHID通信+USB调试助手
    STM32f103C8T6枚举成HID设备与PC通信,速度实测可达64K/s,USB口D+需要上拉1.5K电阻压缩包内包含一个USB调试助手,可以调试HID通信
    2020-11-30下载
    积分:1
  • 机器人路径规划 人工势场法 MATLAB 可直接运行
    机器人路径规划 人工势场法 MATLAB 可直接运行 随时更新
    2020-12-05下载
    积分:1
  • gcc的rpm包全套
    gcc的rpm包全套,离线的时候可以使用,版本是4.4.7,欢迎下载,博客有对应安装教程
    2020-12-08下载
    积分:1
  • 雷达信号matlab仿真
    该文献为雷达信号的MATLAB仿真,内容涉及线性调频信号的产生,模糊函数,脉冲压缩,相参积累,信噪比
    2020-12-04下载
    积分:1
  • 网吧管理系统分析与设计UML
    实验目的、需求分析、类图、用例图、用例规约、时序图、活动图、状态图、部署图、构件图。新出炉的uml大作业放上来为大家分享。
    2020-12-11下载
    积分:1
  • 38.213 NR协议中英文对照.zip
    38.213 NR协议中英文对照,悉心整理,适合通信从业人员和在校学生学习5G nr相关协议,资料清晰,中英文对照版,好资料共享给大家。
    2021-05-06下载
    积分:1
  • zemax光纤耦合设计
    应用zemax对光纤耦合系统进行设计优化
    2020-12-11下载
    积分:1
  • PWM开关稳压电源设计
    基于pwm开关稳压电源设计,pdf格式,模拟仿真,原理电路
    2020-11-30下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 696516资源总数
  • 106436会员总数
  • 7今日下载