/****命令宏定义****/#defineTM1680ID0xe7-IMDN开发者社群-imdn.cn"> /****命令宏定义****/#defineTM1680ID0xe7 - IMDN开发者社群-imdn.cn">
登录
首页 » Others » tm1680参考程序

tm1680参考程序

于 2021-05-06 发布
0 631
下载积分: 1 下载次数: 1

代码说明:

/*********** TM1680 参考程序: 1、A1A0 采用MCU进行控制,实际使用时,可以将A1A0任意接高低电平,TM1680 ID改为相应指令即可; 2、该程序采用STC15W 芯片模拟IIC协议,IO口为双向IO口(无需设置输入与输出),如果MCU的IO口需要设置输入和输出,则在ACK时需要设置为输入 3、该芯片支持标准IIC协议************/#include #include "intrins.h"#include /****命令宏定义****/#define TM1680ID 0xe7

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • RTCM3.3协议全
    全新RTCM3.3协议完整版RTCM STANDARD 10403.3DIFFERENTIAL GNSS(GLOBAL NAVIGATION SATELLITE SYSTEMS)SERVICES – VERSION 3DEVELOPED BYRTCM SPECIAL COMMITTEE NO. 104OCTOBER 7, 2016COPYRIGHT©2016 RTCMRadio Technical Commission for Maritime Services1611 N. Kent St., Suite 605Arlington, Virginia 22209-214RTCM Paper 141-2016-SC104-STD000ocRTCMco00c30RTCM 10403. 3, Differential GNSS Global Navigation Satellite Systems)Services- Version 3, October 7, 2016This standard (referred to as version 3 has been developed by rtCm special Committee 104 as a moreefficient alternative to the standards entitled rtcm recommended standards for diffe rentialRecommended Standards for Differential gNss Global Navigation Satellite Systems Service, Version 2.x(Current version is 2. 3, now designated as RTCM 10402. 3. Service providers and vendors represented onthe SC104 Committee wanted a new standard that would be more efficient, easy to use, and more easilyadaptable to new situations. The main complaint was that the version 2. x parity scheme, which useswords with 24 bits of data followed by 6 bits of parity, was wasteful of bandwidth. Another complaint wasthat the parity was not independent from word to word. Still another was that even with so many bitsdevoted to parity the actual integrity of the message was not as high as it should be. Plus, 30-bit wordsare awkward to handle. the new standard version 3 is intended to correct these weaknessesUnlike Version 2. x, this standard does not include tentative messages The messages in Version 3 haveundergone testing for validity and interoperability and are considered to be permanent. amendments tothe standard may change the meaning of reserved bits or provide additional clarifying text, but no changeswill be made in the data fields. Changes will require new messages to be developed. In addition to themessages described in the current standard the committee continues to develop new messages whichare described in separately published amendments and periodically gathered into a new edition of thestandard. RTCM 10403x for dgNSS services is proving useful in supporting highly accurate differentialand kinematic positioning as well as a wide range of navigation applications worldwideNote that Version 3 messages are not compatible with Version 2. x. Since many receivers have beendesigned and programmed for use with Version 2. x messages, rtCm is maintaining both standards0402 3 and 10403, 3 as" standardsVersion 3.0The initial edition consisted primarily of messages designed to support real-time kinematic (RTK)operations. The reason for this emphasis is that rtk operation involves broadcasting a lot of informationand thus benefits the most from an efficient data format. Version 3.0 provided messages that supportGPS and gloNaSs rTK operations including code and carrier phase observables antenna parametersand ancillary system parametersVersion 3. 1(RTCM Standard 10403.1:The next edition, Version 3. 1 (RTCM Standard 10403. 1), incorporated GPS Network Corrections, whichenable a mobile receiver to obtain accurate rtk information valid over a large area. In addition, new GPSand GLoNaSS messages provide orbital parameters to assist in rapid acquisition a Unicode text messageis also provided for the transmission of textual data. Finally a set of messages are reserved for vendorswho want to encapsulate proprietary data in their broadcasts the gps Network Corrections enable amobile receiver to obtain accurate rtk information valid over a large area. the network rtk correctioninformation provided to a rover can be considered as interpolated corrections between the referencestations in the rtk network this interpolation is not perfect and varies with the actual conditions of theatmosphere. A residual interpolation error has to be expected. With sufficient redundancy in the RtKnetwork, the network server process can provide an estimate for residual interpolation errors. Suchquality estimates may be used by the rover to optimize the performance of rtk solutions The values maybe considered by the rover as a priori estimates only with sufficient tracking data available the rovermight be able to judge residual geometric and ionospheric errors itselfVersion 3. 1. Amendment 1:Amendments 1 was an extensive addition that adds rtcm messages containing transformation data andinformation about Coordinate reference Systems. For rtCm data supporting a rtk service, coordinatesare measured within the itrf or a regional realization surve yors and other users of rtk services mustnormally present their results in the coordinates of local datums. Therefore, coordinate transformationsare necessary. by having RTCM messages that contain transformation data and information about theCoordinate reference systems the users of the rtk service can obtain their results in the desired datumwithout any manual operations. the rtk service providers can then ensure that current information forthe computation of the transformations is always used. the convenience of this method will promote theacceptance of rtK servicesVersion 3. 1. amendment 2:Amendment 2 added residual error messages to support the use of Non-Physical or Computed referenceStations in a network rtk environmentVersion 3. 1. amendment 3:Amendment 3 addressed differences in the way gnss receiver manufacturers have implemented carrierphase encoding of some Version 3 messages so that carrier phase observations are in phase for all carrierphases of a specific frequency i e. they correct for quarter cycle phase shifts. others retain the quartercycle offset between the carrier phase observations in the data. this amendment documents the waydifferent manufacturers have handled the phase shift issue and prescribes a uniform approach for futureproducts.∨ersiⅰon3.1, Amendment4:Amendment 4 added sections 3.5.13 on glONASS Network rtK Correction Messages and 3.5. 14 on FKPNetwork Rtk Correction Messages Related revisions were also made elsewhere in the document.Version 3. 1. amendment 5Amendment 5 added section 3. 5. 12 on State Space Representation related revisions are also madeelsewhere in the document, along with some editorial correctionsVersion 3. 2(RTCM Standard 10403.2)Version 3.2 consolidates Version 3. 1 and all five amendments into a new edition, and it adds MultipleSignal Messages (MSM)as well. the Multiple Signal Message (MSm)format generates receiverobservables in the same way for all included satellite systems. the messages include compact and fullmessages for Pseudorange, PhaseRange, Carrier to Noise Ratio (standard and high resolution), andPhaseRangeratea table near the beginning of the standard lists which messages were included in each separate editionand amendment, so it should not be necessary for users to refer to older versions. Multiple signalMessages are a generic format that will be followed for all GNSs systems. version 3 originally consisted ofmessages for GPS and GLONASS, each in their own format Now with the imminent addition of signals forBeiDou, Galileo, and QZSS, as well as new signals provided by modernized GPS and GloNASS satellitesthe need for a consistent generic format became evident. service providers and users are urged to migrateto the MsM messages to make it easier to accommodate new gNss services(See The RTCM Multiple Signal Messages: A New Step in GNSS Data Standardization")Another newmessage is the gloNaSS Bias Information message. This message provides information which is intendedto compensate for the first-order inter-frequency phase range biases introduced by the reference receivercode- phase biasVersion 3.2, Amendment 1:Added Galileo F/NAv Satellite Ephemeris Data(msg. 1045 )and Bds MSM(msgs. 1121-1127)Version 3.2 amendment 2Added qzss ephemeris(msg. 1044 )and QZss MSm (msgs. 1111-1117Version 3. 3(RTCM Standard 10403.3)This new edition adds Satellite-Based Augmentation System Multiple Signal Messages to previouslydopted messages for GPS, GLONASS, Galileo, and QzssA new ephemeris message has been added for BeiDou(BDS)and a new I/NAV ephemeris message hasbeen added for Galileo. The new edition also reserves 100 messages be used exclusively by sc104 fornew message developmentFinally, the new edition makes consolidates previous amendments and makes numerous editorialImprovementsNavstar GPS Service, Version 2. x. Service providers and vendors represented on the scco000c30z1O2co00c30Contentsco00c30
    2020-06-27下载
    积分:1
  • MATLAB 智能算法测试函数
    MATLAB 智能算法常见测试函数公式 MATLAB实现
    2021-05-06下载
    积分:1
  • 脉冲多普勒雷达信号处理
    脉冲多普勒雷达信号程序仿真,包括信号生成,MTI滤波,多普勒滤波器组滤波,恒虚警处理
    2021-05-06下载
    积分:1
  • 基于MATLAB的两电平逆变仿真模型
    该文件是一个基于MATLAB两电平仿真模型,经仿真验证可行,效果不错
    2020-12-04下载
    积分:1
  • 太阳高度角/方位角计算工具
    前言:之前传了一个工具,不好用,CSDN也没法删,囧~根据经纬度、时间计算太阳高度角和方位角的软件。可单独计算某一时间的太阳高度角/方位角,也可计算一段时间内的太阳高度角/方位角。软件基于Win32变成,采用CEF框架,极大改善了界面。此软件只供学习和参考,不可用于商业目的。一段时间内太阳高度角/方位角的计算结果被导入到SolarAngle.txt中。
    2020-12-12下载
    积分:1
  • Lansvd奇异值分解
    Lansvd奇异值分解,先对矩阵进行Lanczos分解,得到双对角矩阵,再进行奇异值分解。
    2021-05-06下载
    积分:1
  • Matlab,imu 时域积分与频域积分,加速度求速度位移对比
    Matlab,imu 时域积分与频域积分,加速度求速度位移对比
    2020-11-04下载
    积分:1
  • 基于STM32的MQ-3酒精浓度检测源码
    “个人项目——基于STM32的MQ-3酒精浓度检测”博客中使用的代码
    2020-11-28下载
    积分:1
  • pso优化BP神经网络
    主要是粒子群算法优化BP神经网络算法,注释写得很清楚,希望对你们有帮助
    2020-11-27下载
    积分:1
  • SAR面目标成像
    SAR的面目标成像 利用matlab实现了 平顶楼 四角锥等三种立体目标的slc仿真
    2020-12-04下载
    积分:1
  • 696518资源总数
  • 106126会员总数
  • 7今日下载