登录
首页 » Others » 东方财富网公告爬取2

东方财富网公告爬取2

于 2021-05-06 发布
0 258
下载积分: 1 下载次数: 1

代码说明:

爬取东方财富网公司公告,包括爬取利用ajax加载的网页,以及如何模拟翻页。与上一版增加了对各种错误机制的处理。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • BP神经网络逼近非线性函数
    有关于人工神经网络的介绍和用Matlab实现BP神经网络逼近非线性函数的代码
    2021-05-07下载
    积分:1
  • 园区3D模型obj格式,附加高德3d地图demo
    一个园区的obj模型,并附有部分纹理.同时还有高德地图加载3dobj模型实例
    2020-11-27下载
    积分:1
  • 图像质量评价函数
    图像质量评价函数,包括信息熵、图像模糊熵、平均梯度、方差,用matlab实现
    2020-12-02下载
    积分:1
  • Qt 雷达图 卫星图
    在QT5.9 实现雷达图 和余晖扫描,可以添加,删除卫星,修改位置,颜色,标签,状态,增加卫星间连线,可设置线的颜色,状态;内附说明文档一份
    2020-12-04下载
    积分:1
  • 华为HCNA(HCDA)官方培训教材全套(含实验)
    【实例简介】华为HCNA(HCDA)官方培训教材全套(含实验) 通过HCDA认证,将证明您对中小型网络有初步的了解,了解中小型网络的通用技术,并具备协助设计中小型网络以及使用华为路由交换设备实施设计的能力。
    2021-11-01 00:34:26下载
    积分:1
  • 人机界面组态软件HMImaker
    上位机组态软件HMIMaker---专为组态型工控机(工业电脑)开发的的界面编辑设计软件!具有绘图、按钮、位开关、字符控件、数据监控、实时曲线、动态图片、用户与密码设置等功能,完善的界面设计控件。通讯协议为自定义协议,使用简单,灵活,方便。只需用单机机或PLC通过串口简单发送指令,您的显示部分就一切轻松搞定!"所见即所得"、"0"代码!快速生成超炫图形界面设计,如"制作PPT"一样容易、快速!支持离线和在线模拟,快速验证您的设计效果,方便设计和调试,大大减轻软件开发人员在人机界面开发的负担和提高开发效率,专心于专业产品的开发,避免重复性劳动。为您大大地短了产品的开发周期。
    2020-11-29下载
    积分:1
  • 基于Python的深度信念网络
    自己编写的深度信念网络模型程序,可以直接调用。本人用DBN进行了光伏发电预测,效果很好。
    2020-06-29下载
    积分:1
  • 层次聚类matlab代码
    层次聚类matlab代码,数据要求字符串格式,数据类型一致,便于计算和使用,提高数据准确度和可用性,简单实用。
    2021-05-06下载
    积分:1
  • 用来测试的pcm文件
    用来测试的pcm文件,需要的得可以下载
    2020-12-11下载
    积分:1
  • RTCM3.3协议全
    全新RTCM3.3协议完整版RTCM STANDARD 10403.3DIFFERENTIAL GNSS(GLOBAL NAVIGATION SATELLITE SYSTEMS)SERVICES – VERSION 3DEVELOPED BYRTCM SPECIAL COMMITTEE NO. 104OCTOBER 7, 2016COPYRIGHT©2016 RTCMRadio Technical Commission for Maritime Services1611 N. Kent St., Suite 605Arlington, Virginia 22209-214RTCM Paper 141-2016-SC104-STD000ocRTCMco00c30RTCM 10403. 3, Differential GNSS Global Navigation Satellite Systems)Services- Version 3, October 7, 2016This standard (referred to as version 3 has been developed by rtCm special Committee 104 as a moreefficient alternative to the standards entitled rtcm recommended standards for diffe rentialRecommended Standards for Differential gNss Global Navigation Satellite Systems Service, Version 2.x(Current version is 2. 3, now designated as RTCM 10402. 3. Service providers and vendors represented onthe SC104 Committee wanted a new standard that would be more efficient, easy to use, and more easilyadaptable to new situations. The main complaint was that the version 2. x parity scheme, which useswords with 24 bits of data followed by 6 bits of parity, was wasteful of bandwidth. Another complaint wasthat the parity was not independent from word to word. Still another was that even with so many bitsdevoted to parity the actual integrity of the message was not as high as it should be. Plus, 30-bit wordsare awkward to handle. the new standard version 3 is intended to correct these weaknessesUnlike Version 2. x, this standard does not include tentative messages The messages in Version 3 haveundergone testing for validity and interoperability and are considered to be permanent. amendments tothe standard may change the meaning of reserved bits or provide additional clarifying text, but no changeswill be made in the data fields. Changes will require new messages to be developed. In addition to themessages described in the current standard the committee continues to develop new messages whichare described in separately published amendments and periodically gathered into a new edition of thestandard. RTCM 10403x for dgNSS services is proving useful in supporting highly accurate differentialand kinematic positioning as well as a wide range of navigation applications worldwideNote that Version 3 messages are not compatible with Version 2. x. Since many receivers have beendesigned and programmed for use with Version 2. x messages, rtCm is maintaining both standards0402 3 and 10403, 3 as" standardsVersion 3.0The initial edition consisted primarily of messages designed to support real-time kinematic (RTK)operations. The reason for this emphasis is that rtk operation involves broadcasting a lot of informationand thus benefits the most from an efficient data format. Version 3.0 provided messages that supportGPS and gloNaSs rTK operations including code and carrier phase observables antenna parametersand ancillary system parametersVersion 3. 1(RTCM Standard 10403.1:The next edition, Version 3. 1 (RTCM Standard 10403. 1), incorporated GPS Network Corrections, whichenable a mobile receiver to obtain accurate rtk information valid over a large area. In addition, new GPSand GLoNaSS messages provide orbital parameters to assist in rapid acquisition a Unicode text messageis also provided for the transmission of textual data. Finally a set of messages are reserved for vendorswho want to encapsulate proprietary data in their broadcasts the gps Network Corrections enable amobile receiver to obtain accurate rtk information valid over a large area. the network rtk correctioninformation provided to a rover can be considered as interpolated corrections between the referencestations in the rtk network this interpolation is not perfect and varies with the actual conditions of theatmosphere. A residual interpolation error has to be expected. With sufficient redundancy in the RtKnetwork, the network server process can provide an estimate for residual interpolation errors. Suchquality estimates may be used by the rover to optimize the performance of rtk solutions The values maybe considered by the rover as a priori estimates only with sufficient tracking data available the rovermight be able to judge residual geometric and ionospheric errors itselfVersion 3. 1. Amendment 1:Amendments 1 was an extensive addition that adds rtcm messages containing transformation data andinformation about Coordinate reference Systems. For rtCm data supporting a rtk service, coordinatesare measured within the itrf or a regional realization surve yors and other users of rtk services mustnormally present their results in the coordinates of local datums. Therefore, coordinate transformationsare necessary. by having RTCM messages that contain transformation data and information about theCoordinate reference systems the users of the rtk service can obtain their results in the desired datumwithout any manual operations. the rtk service providers can then ensure that current information forthe computation of the transformations is always used. the convenience of this method will promote theacceptance of rtK servicesVersion 3. 1. amendment 2:Amendment 2 added residual error messages to support the use of Non-Physical or Computed referenceStations in a network rtk environmentVersion 3. 1. amendment 3:Amendment 3 addressed differences in the way gnss receiver manufacturers have implemented carrierphase encoding of some Version 3 messages so that carrier phase observations are in phase for all carrierphases of a specific frequency i e. they correct for quarter cycle phase shifts. others retain the quartercycle offset between the carrier phase observations in the data. this amendment documents the waydifferent manufacturers have handled the phase shift issue and prescribes a uniform approach for futureproducts.∨ersiⅰon3.1, Amendment4:Amendment 4 added sections 3.5.13 on glONASS Network rtK Correction Messages and 3.5. 14 on FKPNetwork Rtk Correction Messages Related revisions were also made elsewhere in the document.Version 3. 1. amendment 5Amendment 5 added section 3. 5. 12 on State Space Representation related revisions are also madeelsewhere in the document, along with some editorial correctionsVersion 3. 2(RTCM Standard 10403.2)Version 3.2 consolidates Version 3. 1 and all five amendments into a new edition, and it adds MultipleSignal Messages (MSM)as well. the Multiple Signal Message (MSm)format generates receiverobservables in the same way for all included satellite systems. the messages include compact and fullmessages for Pseudorange, PhaseRange, Carrier to Noise Ratio (standard and high resolution), andPhaseRangeratea table near the beginning of the standard lists which messages were included in each separate editionand amendment, so it should not be necessary for users to refer to older versions. Multiple signalMessages are a generic format that will be followed for all GNSs systems. version 3 originally consisted ofmessages for GPS and GLONASS, each in their own format Now with the imminent addition of signals forBeiDou, Galileo, and QZSS, as well as new signals provided by modernized GPS and GloNASS satellitesthe need for a consistent generic format became evident. service providers and users are urged to migrateto the MsM messages to make it easier to accommodate new gNss services(See The RTCM Multiple Signal Messages: A New Step in GNSS Data Standardization")Another newmessage is the gloNaSS Bias Information message. This message provides information which is intendedto compensate for the first-order inter-frequency phase range biases introduced by the reference receivercode- phase biasVersion 3.2, Amendment 1:Added Galileo F/NAv Satellite Ephemeris Data(msg. 1045 )and Bds MSM(msgs. 1121-1127)Version 3.2 amendment 2Added qzss ephemeris(msg. 1044 )and QZss MSm (msgs. 1111-1117Version 3. 3(RTCM Standard 10403.3)This new edition adds Satellite-Based Augmentation System Multiple Signal Messages to previouslydopted messages for GPS, GLONASS, Galileo, and QzssA new ephemeris message has been added for BeiDou(BDS)and a new I/NAV ephemeris message hasbeen added for Galileo. The new edition also reserves 100 messages be used exclusively by sc104 fornew message developmentFinally, the new edition makes consolidates previous amendments and makes numerous editorialImprovementsNavstar GPS Service, Version 2. x. Service providers and vendors represented on the scco000c30z1O2co00c30Contentsco00c30
    2020-06-27下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载