-
51单片机ADC0832电压测量液晶1602显示的C程序与proteus仿真
51单片机ADC0832电压测量液晶1602显示的C程序与proteus仿真,所有资料。
- 2020-12-02下载
- 积分:1
-
cad二次开发vba源代码
【实例简介】cad 从基础到高级,各种vba代码。分章节。
- 2021-11-14 00:38:26下载
- 积分:1
-
无线充电资料.rar
主要包括以下资料: A3144E.pdfHAL13S低压微功耗霍尔元件全极霍尔开关491pdfHAL145.pdfHAL148L带锁存翻转.pdfHAL513.pdfT3168无线充电接收芯片.jpgTP4056-中文资料-datasheet.pdfXKT408A T5336超低成本无线感应充电IC-无供电IC.pdfXKT412.jpgXKT-412 XKT335.docXKT-412无线充电最新芯片官方完善资料.pdf接收板PCB正面图.jpg
- 2019-08-09下载
- 积分:1
-
信号发生器(不是DDS).zip
使用的DA芯片AD9708,实现的信号发生器,可调频调幅调波形。按键调节,调幅是由硬件调节
- 2021-05-06下载
- 积分:1
-
从文件中读取矩阵,并实现转置
本程序用c实现,在不知道行列的情况,下从文件中读取矩阵,并完成矩阵的转置
- 2020-12-07下载
- 积分:1
-
Matlab_Simulink动力学系统建模仿真
使用Matlab软件中的Simulink对动力学系统建模及其仿真。
- 2020-07-04下载
- 积分:1
-
用友审易数据采集转换工具V5.5(1/2)
用友审易数据采集转换工具V5.5(1/2),非常好用的审计数据采集工具,能自动搜索采集市面上90%以上的财务软件。为审计取数提供帮助。
- 2020-12-04下载
- 积分:1
-
数据结构课程设计大作业-全国交通咨询模拟(报告、源代码)
数据结构课程设计大作业,交通咨询模拟。1.出于不同目的的旅客对交通工具有不同的要求。例如,因公出差的旅客希望在旅途中的时间尽可能短,出门旅游的旅客则期望旅费尽可能省,而老年旅客则要求中转次数最少。编制一个全国城市间的交通咨询程序,为旅客提供两种或三种最优决策的交通咨询。2.基本要求(1)提供对城市信息进行编辑(如:添加或删除)的功能。(2)城市之间有两种交通工具:火车和飞机。提供对列车时刻表和飞机航班进行编辑(增设或删除)的功能。(3)提供两种最优决策:最快到达或最省钱到达。全程只考虑一种交通工具。(4)旅途中耗费的总时间应该包括中转站的等候时间。(5)咨询以用户和计算机的对话方式
- 2020-12-07下载
- 积分:1
-
【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
- 2020-12-10下载
- 积分:1
-
稀疏表示SRC算法
经典的稀疏表示SRC算法,适合广大人脸识别的同学使用参考-The classic sparse representation SRC algorithm
- 2020-12-08下载
- 积分:1