登录
首页 » Others » 64QAM调制原理.doc

64QAM调制原理.doc

于 2021-06-09 发布
0 226
下载积分: 1 下载次数: 3

代码说明:

64QAM调制原理   (1)基于  DVB-C的有线数字电视 基于DVB-C的有线数字电视采用了频分(8MHz与8MHz之间)与时分(8MHz之内)复用相结合的方法在一个物理频道上可传输6~8套标准清晰度(码率4Mb/s对应40多万像素)电视节目或2套高清晰度(码率18Mb/s对应200多万像素)电视节目。具有图形质量好,可达到DVD的图象质量。传输节目的套数多(可上百套),而且还可像手机一样移动接收且无重影。同时有线数字电视信号的抗干扰能力也模拟电视信号强(源于信道编码),此外有线数字电视还具有模拟电视无法比拟的条件接收(可从技术手段上彻底解决收费与非法偷接信号的问题)和电子节目指南(EPG)等一系列优点。由于有线数字电视系统远比模拟电视系统复杂,其关键技术也比模拟电视好,主要体现:信源编/解码、信道编/解码、传输复用、64QAM正交幅度调制、条件接收(CA)系统、中间件技术和大屏幕显示技术等。我们知道模拟电视的三大技术指标是C/N、CTB和CSO,而有线数字电视系统的主要技术指标除了这3项之外还有:采样频率、量化比特率、数码率(数码率=采样频率*量化比特率)、误码率、相位抖动和调制误差率(MER)等。需要说明的是模拟电视与数字电视的载噪比(C/N)的定义不同:对模拟电视而言C/N的定义是图象载波电平的有效值与规定噪声带宽(5.75MHz)的噪声电平的均方根值之比。而数字电视的C/N的定义却是己调制信号的平均功率与规定噪声带宽(6.95MHz)内的噪声的平均功率之比。   (2)常用的数字调制方式 所谓数字调制是指用数字的基带信号对正弦载波信号的某些参数(幅度、频率和相位)进行控制,使之其随基带信号的变化而变化。数字调制有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)三种基础形式。当然也可由这三种基本形式组合成联合键控,例如mQAM调制就是幅度和相位的联合键控。此外,还有编码正交频分复用(COFDM),X进制残留边带调制(美国数字电视使用,其中8VSB相当于相当于64QAM,16VSB相当于相当于256QAM)等。数字调制与模拟调制从本质上讲没有什么区别,只不过模拟调制(以调幅为例)对载波的调制是连续的(信号本身就是连续的),同时在收端对载波信号的调制参量的幅度也是连续地估值。而数字调制则对载波的调制不是连续地估计。而数字调制则对载波的调制不是连续的,仅是若干个离散的值,在收端只对载波信号的离散调制参量的幅度进行检测。   衡量数据信号的载波调制有两个重要的指标,一是频带利用率(调制效率,单位频带内所能传输的比特数);二是功率利用率(在满足误码率的条件下所需功率越小,功率利用率越高)。我们知道数字通信系统的研究的目标是在最小的信道带宽内,以最低的差错率和最低的信号功率来传输最大的数据量。由于图象信号压缩编码后的码率仍是4M/s(标清),为了在有限的带宽内传输更多的消息量,通常既要求调制效率较高,同时也要求功率利用率较高,而mQAM因其是抑制了载波的调制,具有较高的功率利用率,刚好满足这一点。因此,基于DVB-C有线数字电视采用mQAM调制方式,64QAM b/s是高效的二维调制,理论上调制效率可达6b/s,但考虑滚降和信道编码后实际调制效率为4.75b/s。 (3) 64QAM调制     我们知道单独使用幅度或相位携带信息时,不能充分利用信号平面,这可从星座图上直观地看到,对mASM调制而言,星座点分布在一条轴线上,mPSM调制的星座点分布在圆周上,同时伴随着m的增大其星座点的距离也跟着减小,造成抗干扰能力的下降。为解决这一问题mQAM调制应运而生,它是一种二维调制,同时具备较高的调制效率和较好的功率利用率。mQAM调制可充分利用信号平面,星座点的分布呈块状。 mQAM调制既可以用无线信道,也可以用有线信道。由于有线数字信道以HFC网络为传输媒介,信道的条件较好,m的数值可选的稍大一些。一般而言m的数值选择要兼顾调制效率和信道条件这两方面因素,故基于DVB-C的有线数字电视选用64QAM调制。 64QAM调制是基于DVB-C的有线数字电视的核心技术,所谓QAM是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带调制。在mQAM中m叫状态数,通常取值为16、32、64、128和256,状态越低(意味着星座点之间的空间距离远)抗干扰能力强,但调制效率较低(携带的消息量少),反之状态数越大(意味着星座点之间的空间距离近)抗干扰能力弱,但调制效率较高(携带的消息量大,同时要求信道质量也越高,即要求优质的光缆电缆和各种有源无源器件直至优质的施工质量)。有线数字电视DVB-C标准中规定使用的是64QAM,需要特别注意的是64QAM的名称虽为正交幅度调制,但实际上却是所谓的振幅-相位联合键控,这是一个有线数字电视中非常重要的概念,正因为QAM相位调制(依靠不同的相位携带不同的消息),才导致了有线数字电视对HFC传输网络质量的要求高于模拟电视。64QAM中的64个状态(星座点)上的每个星座点的解调要靠幅度和相位共同决定,64QAM中采用的是8进制(或8电平,提高效率),每个星座点由6比特(6位二进制组成,从000000~111111),所有的信息(视频码流、音频码流、和辅助数据码流)都在每一个星座点中的6比特中。 (3.1)64QAM调制的原理 所谓mQAM是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带载波。设ml(t)和mQ(t)是两个独立的基带信号,cosωct和sinωct是相互正交的载波,则发送端形成的正交振幅调制信号为:     e0(t)=mI(t) cosωct mQ(t) sinωct 其中:cosωct为同相信号或I信号,sinωct是正交信号或Q信号。以64QAM为例,经2~8电平转换后可得到-1、-3、-5、-7、 1、 3、 5和 7共8个电平,则调制器I(正交)输出的8个信号为 7sinωct、 5sinωct、 3sinωct、 1sinωct、-1sinωct、-3sinωct、-5sinωct、-7sinωct;调制器Ⅱ(同相)输出的8个信号为: 7cosωct、 5cosωct、 3cosωct、 1cosωct、-1cosωct、-3cosωct、-5cosωct和-7cosωct。两路己调信号相加共有64个不同的组合,这样便形成64QAM的星座图。图Ⅰ为mQAM调制原理示意图。 由64QAM调制原理知其调制流程如下: (1)                                  输入多路复用的TS(系统复用器完成,一般而言一台复用器对应一台64QAM调制器),首先进行串并变换,即将一路串行码流变成二路并行码流,速率减半,码流为二进制; (2)                                  扰码频谱扩散(扰码是为了避免DVB-C数据帧结构中的长连“1”或长连“0”的出现,以便在接收端恢复时钟信号。MPEG-2传输复用包经过扰码处理后,其“1”或“0”在时间上变得均匀分布,此外扰码频谱扩散还能保证星座图中各点的能量密度一致); (3)                                  信道编码(外码,码型为RS,纠错FEC,为对付突发干扰引入外交织,内交织在188字节中进行,外交织包含RS编码在204字节中进行); (4)                                  字节映射成符号,即完成电平变换或称为进制变换(2电平变为8电平或2进制变为8进制,首先进行比特到符号的转换,如64QAM是将8比特数据转换成6比特为一组的符号); (5)                                  Nyquist滤波信号成型(即基带成形,在64QAM调制之前对I、Q信号进行升余弦平方根滚降滤波); (6)                                  多电平正交幅度调制64QAM产生中频信号,先由振荡器产生同相的载波,然后经移相90度后产生正交的载波,同时调制完成后将抑制载波,因为载波不携带任何信号; (7)                                  并串变换,既将二路并行码流变成一路串行码流,速率增加一倍,码流已不是二进制,而是变为8进制的符号; (8)                                  上变频形成RF信号输出。    这里的幅移键控本质上是一个乘法器,它将数据脉冲信号与正弦载波信号相乘,输出为已调信号。换言之,幅移键控即数字脉冲为1时,对应已调波有输出1信号,反之当幅移键控的数字脉冲为0时,对应已调波信号输出0信号。可见幅移键控实际上是将基带信号的频谱在频率轴上进行搬移。    64QAM调制器共有44种不同的相位,64种不同幅度,星座图中64个状态(000000~111111)中每一个状态的幅度和相位都是一一对应的关系,但由于存在着一些相位相同的星座点,这些点的判决由不同幅度和相同的相位共同决定,其他判决点由不同幅度和不同相位共同决定。     盲均衡(时域均衡)即指不需要训练信号,仅利用接收信号本身的先验信息便可均衡信道特性,使均衡器的输出信号尽量接近发送信号。 mQAM调制器的振荡器有传统的模拟振荡器和现代的数字振荡器之分,进口mQAM调制器一般为数字振荡器,其性能远优于模拟振荡器。基于数字振荡器的mQAM具有完美的正交调制、没有幅度不平衡、载波完全抑制和非线性失真等优点。 mQAM在调制时产生两个边带信号和一个载波分量,但载波分量不携带任何信息,不能有效的利用功率,因此在调制的输出信号中将载波抑制掉。在机顶盒的解调中采用相干解调,相干解调的关键技术是相干信号的提取,即载波的提取。相干载波需从抑制载波的已调信号本身中恢复出参考载波,通常采取非线性处理和滤波提取。经过非线性处理可以让不含载频的信号产生载频,然后再滤波提取,一般情况下,载波提取和解调是在同一个环内同时完成的,主要有平方环和考斯塔斯环(Costas)两种。然后机顶盒中恢复出的载波要与64QAM调制器产生的载波同频同相,这叫载波同步。此外数字系统中还有位同步(码元同步或比特同步)、帧同步和网同步等。 (3.2)64QAM调制的主要技术指标 64QAM调制器是数字调制器,其主要技术指标也较模拟的中频调制器多,mQAM调制器规定数字频道的载频安排在每个物理频道8MHz的中央位置,各频道的频率范围与模拟电视一致,也分捷变频和固定频道两种形式。下面以科学亚特兰大SA公司的主流品种QUASAR MKII(1U高度标准19英寸安装尺寸)mQAM调制器为例简介其主要技术指标和含义。 (1)                                       接口指标  接头:BNC,75Ω              ASI输入(标准配置)  类型:异步串行接口  包格式:自动检测:188/204包  码率:1~215Mb/s(最小1 Mb/s净荷) (2)                                       RF输出 接头:F头,BNC或75Ω,50/70Ω 频率:50~870MHz  带宽:1~8MHz可选  电平;50~60dBmV  回波损耗:≥15dB  BDR:≥9×10-9  SNR:≥50dB  RF测试口电平:-20 dB (3)                                       信号指标  信道编码;纠错方式FEC、RS编码和外交织  交织深度:I=12  MER(均衡后)≥40 dB(射频) 包格式:自动检测:188/204字节包  QAM星座:16、32、64、128、256QAM  支持的输入码率:高达215 Mb/s  符号率:1~7Mbaud  PID过滤功能:可选 (4)                                       网络接口  接口类型:RJ45  接口速率:10Base-T  支持协议:HTTP、SNMP (5)                                       选件     DS-3电信输入接口     64QAM调制器中最重要的一个技术指标是调制误差率(MER)。调制误差率国标的定义是理想矢量的幅度的平方与误差矢量幅度平方之比。显然调制误差率与反射损耗一样越大越好,国标规定64QAM的MER要大于32dB,256QAM的MER要大于30dB,图2为调制误差率示意图。         图2    调制误差率MER示意图 64QAM调制器还有一个信道指标有效载荷,数值为38Mb/s(不含RS编码),通常节目只能用到36Mb/s,还要留一部分码流传输EPG等辅助数据。它的含义是8MHz带宽内传输的码流不能大于此值(比如传10多套标清或3套高清电视节目),否则就会发生码流溢出的现象,从而导致马赛克或黑屏出现,就像GE中发生拥塞会降低传输速率或丢包一样。依标清电视码率4Mb/s和高电视码率18Mb/s,一台64QAM调制器可传8套标清或2套高清电视节目(还要为辅助数据如EPG等留下部分码流)。 选件DS3输入接口(北美标准三次群速率为45Mb/s)的功能很有使用价值,因为当今的广电网络并不是一个孤立的网络,大都通过SDH联网。上接省干SDH网络,下连各县SDH网络,可以说起到承上启下的作用。因此,从省网下传的信号和下连各县的信号都是走DS3通道,有了这个输入接口则SDH网络来的信号可以直接进入mQAM调制器,非常方便。相反若没有这个接口则还要使用网络适配器进行信号格式转换,即不方便也不经济。 (3.3)  64QAM调制和HFC网络的关系 基于DVB-C的有线数字电视前端平台中的设备和HFC网络联系最紧密的莫过于64QAM调制器了,其它前端设备如MPEG—2编码器和系统复用器等与HFC网络关联度不大,不像64QAM调制器那样对HFC网络的影响是直接和显著的。因此,从这个意义上讲64QAM对HFC网络有着举足轻重的作用。这样因为64QAM除了完成正交幅度调制外,还要完成信道的编码等功能。因为在实际运用中解码器(机顶盒)处要求MER大于30 dB,调制误差率反映了整个系统中信号所有类型的损伤和劣化。因此,调制误差率可以看成接收信号的品质因数,即数字信号能被正确还原的概率。可以这样理解调制误差率几乎相当于信噪比(S/N)的技术指标。显然调制误差率(MER)越高越好,这一点由调制误差率的定义不难看出。国标64QAM的MER要求大于32dB,好的可以大于43 dB,高于国标10 dB。显然,调制误差率是64QAM调制器中最重要的一个技术指标,这一点就像HFC网络中射频放大器的非线性失真指标一样重要。调制误差率(MER)高意味着对HFC网络的质量要求可以较低,即容许放大器串联的级数可以稍多,容许网络中有一些反射、接触不良和同轴电缆的质量可以稍差一点等等。反之若调制误差率(MER)指标越低,意味着对HFC网络的质量要求较高,即容许放大器串联的级数少,同时对HFC网络中存在反射、接触不良和同轴电缆的质量等提出了更高的要求(实际情况表明,这一点往往是不容易达到的)。由此可见调制误差率(MER)也是区分QAM调制器档次高低的关键技术指标。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 数字上摄影测量最小二乘匹配
    先用点特征提取算子,再粗匹配,最后使用最小二乘匹配,适合核线影像
    2020-11-30下载
    积分:1
  • FPGA 做的100M 频率计
    基于FPGA的100M频率计设计功能描述: 该频率计是以FPGA为核心器件,嵌入mc8051 IP核,并以整形电路、1602液晶显示器等作为外围设计而成的等精度频率计。通过1602液晶显示被测频率值、周期、脉宽、占空比,闸门时间在0.1—10S连续可调,测量范围为0.1Hz—100MHz。
    2020-12-03下载
    积分:1
  • 相控阵雷达接收技术-相控阵雷达技术丛书
    接收技术是相控阵雷达最基本的技术之一。本书全面分析了相控阵雷达通道接收技术、相参频率合成技术、波形产生和激励源技术,这三部分内容涵盖了完整的相控阵雷达接收技术,具体有:相控阵雷达对接收机性能的要求,接收机的构成和主要功能;噪声的特性、来源,噪声系数及其测量方法和动态范围;多通道接收、计算机辅助测试和接收机监控技术;现代雷达中开始出现的数字接收技术;相位噪声的特点,在时域和频域表征它的参数和术语,对它的测量方法以及它对雷达性能的影响;基本的频率合成技术,特别详细地介绍了近年来出现的直接数字式频率合成技术;雷达发射波形和激励信号产生技术;相控阵雷达数字化接收技术的新进展。.目录Ⅻ3.4普遍情况下的网络噪声特性2了3.4.1多频网终的噪声特性303.4.2级联网络的噪声特性pt.自d鲁333.4.3超外差雷达接收机网络级联分析…39接收机灵敏度403.6相控阵雷达接收阵面的有效噪声温度3.6.1相控阵雷达有源天馈线阵面的主要类型433.6.2各类天线阵的有效噪声温度453.7噪声系数的测量463.7.1噪声源…463.7.2Y因子法…∴……483.7.3自动测量法3.7.4噪声直接测量法543.8内部干扰——电磁兼容性设计………553.8.1滤波与带宽的优化56.8.2中频频率的优化59参考文献…60第4章通道接收机的其他性能…624.1动态范围………624.1.1增益设计和增益分配634.1.2接收机输入端回波信号的动态范围……644.1.3接收机设备的动态范围674.1.4接收机的增益控制704.1.5接收机动态范围对MTI改善因子的影响4.2多通道接收机…………724.2.1多通道接收机的特性……724.2.2多通道接收机性能对相控阵雷达性能的影响…………………724.3通道接收机的计算机辅助测试(CAT)技术………734.3.1计算机自动测试基本原理和系统构成鲁非■鲁鲁章鲁∴…744.3.2单通道性能测试………………764.3.3通道间幅相一致性测试77相控阵雷达接收机的监控与BIT784.4.1相控阵雷达接收机监控和BⅠT的必要性、内容与方法4.4.279参考文献80Ⅻ相控阵雷达接收技术第5章数字接收机及采样定理1数字接收机的意义815.1.1雷达数字接收机的关键技术5.1.2数字接收机对雷达通道接收机性能的影响82低通采样定理…825.2.1采样845.2.2量化883中频数字化895.3.1带通釆样定理。曲自B自鲁鲁鲁5.3.2带通采样的进一步分析94降低噪声和杂散的方法97参考文献106第6章模数变换(ADC)技术…………………………………1086.1ADC的类型及其特性1086.1.1闪烁型或全并行型1096.1.2流水线型1106.1.3逐次逼近型………………·即.·看··罪·如自鲁6.1.4∑一△型……1126.2ADC主要性能分析…………………………………1146.2.1转换速率1166.2.2分辨力∴…1176.2.3增益误差非自自1176.2.4量化噪声1176.2.5输出信噪比暂最DD1216.2.6有效位……1226.2.7非线性失真及无杂散动态范围………………………………1246.2.8谐波失真…1256.2.9输入带宽,小信号带宽,全功率带宽…∴1266.2.10积分非线性误差和微分非线性误差1276.2.11漏码…1306.2.12直流偏移……………1306.2.13采集时间、孔径时间、孔径延迟时间和有效孔径延迟时间…1306.2.14孔径不确定性噪声1326.2.15噪声功率比1346.2.16缓冲放大器…136日录上絮6.2.17数字接收机与系统噪声系数………………1366.2.18ADC对雷达性能的影响138参考文献140第7章解调技术…1417.1解调技术的主要性能指标7.2模拟信号的解调●·普鲁啬1443无混频数字信号的解调1467.3.1数字正交检相器的一般原理∴…1477.3.2希尔伯特滤波法1487.3.3低通滤波法…………………1497.3.4插值法………………………1517.3.5数字乘积检相(DPD)法………1527.4采样率转换技术1537.4.1抽取……1537.4.2内插1545高效数字滤波器1567.6数字下变频器…7.6.1实现数字下变频的方法1617.6.2ASIC方法1617.6.3FPGA方法……甲·普···………………165参考文献…171第8章频率合成器的各项性能、相位噪声及其测量方法∴……1738.1频率合成器的主要性能指标1738.1.1工作频率范围及频率捷变点数…1738.1.2工作频率、频率准确度及长期频率稳定度……1748.1.3输出功率1748.1.4频率转换时间及其测试技术174频率稳定度或相位噪声………………1758.1.6谐波与杂散1768.1.7撷率推移1778.1.8频率牵引●●4……1778.1.9频率复现性1778.1.10开机特性1778.2频率稳定度及其表征………1788.2.1频率稳定度对于现代雷达的意义178Ⅻ相控阵霅达接收技术82.2相位噪声的产生………1838.2.3雷达频率源的频率稳定度砑究特点1938.2.4相位噪声的谱密度分布∴……………………19582.5频率稳定度的表征……1978.3频率稳定度的测量技术·。由击●果●………………………2128.3.1时域一阿仑方差测量法…2138.3.2频域测量方法之直接频谱仪法………………218.3.3频域测量方法之二—一相位检波法…∴…2178.3.4频域测量方法之三——鉴频法2238.3.5附加噪声的测量………………2248.3.6信号源调幅噪声的测量……2258.3.7脉冲信号相位噪声的测量技术…………226参考文献………230第9章频率源性能对雷达性能的影响……2329,1对雷达接收机噪声系数的影响2329.2对雷达接收机选择性的影响………2339.3对接收机动态范围的影响………2339.4对脉冲压缩性能的影响……鲁·鲁命鲁自着·非最单·非“·p看自·鲁·要罪要·D·身看2339.5对动目标显示性能的影响…2349.5.1动目标显示技术的基本原理……D●鲁2349.5.2颊率稳定度对MTI的影响…2369.6对脉冲多普勤雷达的影响240参考文献241第10章频率合成器的构成●鲁。看,·自·非24210.1直接模拟式频率合成技术……24210.2间接模拟式频率合成技术(锁相环技术)…………………24410.3直接数字式频率合成技术24610.3.1DDS的基本工作原理24710.3.2DDS输出信号的质量…25010.3.3DDS杂散的抑制……25710.3.4DDS输出频率的扩展26010.3.5数模变换器(DAC)26010.4组合式频率合成技术……………26710.4.1锁相环/直接式合成技术26710.4.2DDS/锁相环式合成技术268目录X参考文献………………………268第11章发射波形和激励信号产生技术27011.1发射波形的产生…………270模拟产生法27111.1.2数字产生法27411.2激励信号的产生……………28011.2.1直接中频信号产生…28011.2.2正交调制技术和上变频技术……………28111.3激励信号带宽的扩展一超宽带信号的产生……………28511.3,1基带信号带宽的展宽…………………………28511.3.2调制器的选择28611.3.3倍频技术28711.4激励信号质量分析自自自自「非28711.4.1基带波形的质量…28711.4.2正交调制器输出信号的质量……鲁。·香卵2811.4.3信号质量对匹配滤波一脉冲压缩性能的影响……290I1.4.4信号质量对去斜处理性能的影响……………293参考文献…297第12章数字化接收技术的新进展…………………………29912.1数字阵雷达(DAR)的发展历史及现状29912.2数字收发组件和数字接收机30312.3微波ADC技术…看·曲·鲁·鲁非自●。·带垂垂…30712.4光学ADC技术…………………………………31012.4.1电子ADC在提高ADC的动态范围一釆样频率积时的局限性……31112.4.2光学ADC的分类及几种主要类型的特性…31412.4.3光电ADC芯片……………32412.4.4光学模数变换器的应用…∴………32612.5多芯片组件(MCM)技术32612.6直接数字频率合成技术、数字波形产生和数字上变频技术……327参考文献328符号表………331缩略语340第1章概论1.1相控阵雷达接收分系统的构成部完整的相控阵雷达接收分系统的构成如图1.1所示,它包含了通道接收机、频率源和激励源(含雷达波形产生器)三个组成部分通道接收机模拟接收机或模拟前端数字接收机来自天线阵面的去DBF网络或射频信号模拟接收机或模拟前端数字接收机信号处理机1模拟接收机或模拟前端数字接收机频率源基准频率变频器及僧频器霎达基带波形产生器激励源图1.1相控阵雷达接收分系统的构成通道接收机是雷达回波信号的通道,它接收来自相控阵天线阵面的雷达回波信号。模拟接收机对回波信号首先进行一系列模拟处理,包含保护接收机免烧毁或饱和的有源/无源小功率限幅器、为机内检测(BⅠT)而设置的低插损定向耦合器、低噪声放大器(LNA)、下变频器。第一下变频器是借助于雷达频率源产生的本振信号(f()将微波射频回波信号下变频至固定的中频频率。变频次数可以是一次、两次或三次,视雷达的工作频段高低和中频频率优化结果而定,它们的作用2相控庥管达接取技术是逐渐将中频频率降低到合适的频率。接收机在中频频段,除对回波信号进行放大之外,还会对回波信号的带宽进行匹配或准匹配滤波;为了压缩回波信号的瞬时动态范围,在射频段或中频段,对通道的总增益进行灵敏度时间控制(STC);对多路通道之间的幅度/相位一致性进行调整;为后续的数字接收机设置防混叠滤波器。结构简单的模拟接收机有时又称为模拟前端雷达回波信号,经过模拟接收机的上述处理之后进人数字接收机,在数字接收机中首先是对模拟回波信号进行采样和量化分层,变换为特定字长和特定数据率的数字信号,高速率的数字信号进入数字下变频器(DDC),在一对正交数字乘法器中,借助于数控振荡器(NCO)把模数变换器采集到的数字信号解调出数字基带信号。为了与后续的数字信号处理机速率匹配,往往还要进行数据率的抽取和进步的数字匹配滤波,最后以极坐标或直角坐标的格式输出数字信号去进行数字波束形成或雷达数字信号处理回波信号数字化的切入点是根据雷达工作频段、回波信号带宽和模数变换器的采样速率等因素决定的,可以是在低中频,高中频,甚至于射频、微波频毀进行数字化。目前模数变换器的釆样率多在几兆赫至1吉赫范围内,国际上也出现了几吉赫以上采样率的模数变换器。模数变换器的采样率高低,决定了模拟接收机的繁简程度,技术的发展趋势是促成直接在射频或微波频段进行回波信号的数字化相控阵雷达接收分系统的第一个重要组成部分是通道接收机。通道接收机的通道数目多少取决于相控阵雷达的功能,这在本书第2章进行详细叙述。最简化的情况是采用三通道的单脉冲测角体制,为了进行副瓣对消,会增加副瓣对消接收通道,如果作为机载、星载相控阵雷达,还会设置对海接收通道和保护通道。对于采用数字波束形成技术的相控阵雷达,可以将天线阵面分割成若干个子阵,每个子阵后置一路通道接收机,也可以每个天线辐射单元后置一路通道接收机。相控阵雷达接收分系统另一个重要组成部分是雷达频率源,有时又称为雷达频率合成器,它是以一个高质量振荡器作为频率基准,经过不同方法的综合形成的,在本书第10章介绍了三种不同的类型,即直接模拟式频率源、间接模拟式频率源(即锁相环式频率源)、直接数字式频率源,以及它们相互结合的组合式频率源它提供通道接收机和雷达激励源所需的各本振信号、数字接收机和雷达波形产生器所需的采样信号()和时钟信号(f),除此之外,雷达频率源还向雷达定时器提供定时基准信号。相控阵雷达接收分系统第三个组成部分是所谓的雷达激励源,它实际上就是相控阵雷达发射机的前端部分。雷达激励源由上变频器和雷达波形产生器组成雷达波形产生器往往是数字式可编程的,它以直接式频率综合器(DDS)芯片为核心。理论上讲这种构成的波形产生器可以产生任意多种雷达工作波形,可以任意改变脉冲宽度和雷达重复频率,可以进行任意形式的调制:例如脉冲雷达常用的线第1章概论性调频、非线性调频和脉冲编码调制等,可以产生基带波形,也可以产生中频波形,可以产生正交的1/Q分量信号,也可以产生合成单边带信号上变频器:正如同通道接收机的下变频方式,雷达激励源可以采用上变频方式,将雷达波形产生器输出的中频信号借助雷达频率源输出的本振信号上变频至发射频率,也可以在上变频基础上再倍频至雷达发射频率,这要视雷达工作频段而定。激励源输出的功率一般在几十毫瓦至几百毫瓦之间,到雷达发射机内部再经过前级放大后驱动发射机的末级功率放大器1.2相控阵雷达对通道接收技术的要求雷达接收分系统为雷达能在噪声、杂波和干扰中检测到有用目标回波信号提供通道,并进行必要的处理。相控阵雷达一般是相参雷达,接收机常常是超外差式体制,它有一个或多个中频频率。接收机首先对信号进行低噪声放大并预选,最大限度地降低内部产生的噪声和带外干扰,并使进入的射频或微波回波信号与相参本振进行变频,频率变换到中频后进一步放大和对信号带宽进行匹配滤波,再进行正交相参解调和模数变换(对于数字接收机是先进行模数变换再进行正交相参解调);为了适应回波信号在大动态范围内的变化,而通道又能工作在线性状态,需要对通道进行适当的增益控制。除以上常规功能之外,相控阵雷达对接收分系统还有如下的一些突出要求对天线接收到的目标回波信号提供污染尽量小的信号通道,并高保真地传输回波信息。因此,一般情况下,相控阵雷达接收机应为线性接收机,对信号提供线性通道。所谓“污染”,包含了设备内部产生的各种噪声以及寄生调幅和调相噪声;模数变换器的量化噪声、采样脉冲产生的孔径抖动噪声;由设备的非线性产生的谐波、互调产物;频率组合产生的组合干扰频率;各种源产生的杂散频谱。这些成分均会污染信号空间。接收机的主要任务之一就是减小这些污染源的影响,尽量扩大无污染空间。所谓信号空间,在频域的宽度是接收机的带宽,信号强度的下限就是最小可检测信号电平,但这受限于噪声电平高低,这就要抑制各种噪声来降低接收机的噪声系数,提高接收机的灵敏度,以扩展信号空间的下限,扩展信号空间的上限就是通道各电路的线性输出能力,为此,就要减小器件的各种非线性失真,合理地设计系统,比如系统增益的合理分配,增益控制的合理设计,被选用器件的线性输出能力。相控阵雷达,当采用DBF技术时,通道接收机往往是多通道的,其中对接收机最突出的要求是:为了高性能自适应天线波束的形成,对通道的幅相一致性和相互之间的隔离都提出了很高的要求,特别是在信号全动态范围内及雷达工作频段内的幅相一致性和隔离度提出了严格的要求。如果说,通道的幅相…一致性还可以通过计算机进行误差修正的话,那么通道工作的稳定性就显得更为突出。
    2020-12-11下载
    积分:1
  • GJB 5186 1553B总线测试标准1~7卷
    MIL-STD-1553B数字式时分制指令/响应型多路传输数据总线测试方法 第1部分~第7部分全集(全是PDF扫描版本)----网上搜集,这里做了全本供大家学习
    2021-05-06下载
    积分:1
  • matlab串口数据实时图形显示
    matlab和单片机通信,将数据实时图形显示。显示的是点线图,图形是一段时间内的
    2020-11-28下载
    积分:1
  • m序列_gold及m&walsh序列生成及序列相关性仿真
    m序列_gold及m&walsh序列生成及序列相关性仿真mod2plus用来产生gold序列,输入m序列优选对便可产生gold序列
    2020-11-29下载
    积分:1
  • Quartus verilog HDL语言实现qpsk的仿真
    Quartus verilog HDL语言来实现qpsk的仿真,可运行,编译,下载。
    2020-12-11下载
    积分:1
  • ttf16.ocx 6.1.62支持win10
    打印控件最新版支持win10 修复数据保护报错 1321153465464
    2021-05-06下载
    积分:1
  • 张正友标定matlab源代码
    张正友标定matlab源代码,里面有大量数据,可以为自己写标定代码提供参考。
    2020-12-05下载
    积分:1
  • 智能决策支持系统---作战防御
    利用智能决策技术,模拟作战防御,并给出正确的防御方案
    2020-11-30下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载