登录
首页 » Others » 克里金插值matlab程序

克里金插值matlab程序

于 2021-11-08 发布
0 598
下载积分: 1 下载次数: 7

代码说明:

克里金插值matlab程序 克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法。它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后 进行加权平均来估计块段品位的方法。但它仍是一种光滑的内插方法 在数据点多时,其内插的结果可信度较高 。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • IEEE3机9节点潮流计算matlab
    压缩包里有IEEE3机9节点的潮流计算matlab程序,并附上节点描述表和支路描述表,只要修改这两个就行
    2021-05-06下载
    积分:1
  • sklearn0.19中文文档
    sklearn0.19中文文档 PDF格式高清。.1. 广义线性模型1.1.1. 普通最小二乘法1.1.1.1. 普通最小二乘法复杂度1.1.2. 岭回归1.1.2.1. 岭回归的复杂度1.1.2.2. 设置正则化参数:广义交叉验证1.1.3. Lasso1.1.3.1. 设置正则化参数1.1.3.1.1. 使用交叉验证1.1.3.1.2. 基于信息标准的模型选择1.1.3.1.3. 与 SVM 的正则化参数的比较1.1.4. 多任务 Lasso1.1.5. 弹性网络1.1.6. 多任务弹性网络1.1.7. 最小角回归1.1.8. LARS Lasso1.1.1.监督学习1.1.广义线性模型o1.1.1.普通最小二乘法1.1.1.1.普通最小二乘法复杂度o1.1.2.岭回归1.1.2.1.岭回归的复杂度1.1.22.设置正则化参数:广义交叉验证o 113. Lasso■1.1.3.1.设置正则化参数1.1.3.1.1.使用交叉验证■1.1.3.1.2.基于信息标准的模型选择1.1.3.1.3.与SVM的正则化参数的比较o1.1.4.多任务 Lassoo1.1.5.弹性网络o1.1.6.多任务弹性网络o1.1.7.最小角回归o.8. LARS Lasso■1.1.8.1.数学表达式o1.1.9.正交匹配追踪法(OMP)o1.1.10.贝叶斯回归1.1.10.1.贝叶斯岭回归1.1.10.2.主动相关决策理论-ARD1.1.11. logistic回归o1.1.12.随机梯度下降,SGDo1.1.13. Perceptron(感知器)o1.1.14. Passive Aggressive Algorithms(被动攻击算法)o1.1.15.稳健回归( Robustness regression):处理离群点( outliers)和模型错误1.1.15.1.各种使用场景与相关概念■1.1.15.2. RANSAC:随机抽样一致性算法( RANdomSAmple Consensus1.1.15.2.1.算法细节1.1.15.3.Thel-sen预估器:广义中值估计1.1.153.1.算法理论细节1.1.154. Huber回归1.1.155.注意1.1.16.多项式回归:用基函数展开线性模型1.2.线性和二次判别分析o1.2.1.使用线性判别分析来降维o12.2.LDA和QDA分类器的数学公式o123.LDA的降维数学公式o1.2.4. Shrinkage(收缩)o12.5.预估算法1.3.内核岭回归1.4.支持向量机o1.4.1.分类■1.4.1.1.多元分类■1.4.1.2.得分和概率1.4.1.3.非均衡问题1.4.2.回归o143.密度估计,异常( novelty)检测o1.4.4.复杂度o1.4.5.使用诀窍o1.4.6.核函数1.4.6.1.自定义核14.6.1.1.使用 python函数作为内核1.4.6.1.2.使用Gram矩阵14.6.1.3.RBF内核参数o1.4.7.数学公式1.4.7.1.sVC■1.4.7.2. NuSVo1.4.7.3.sVRo14.8.实现细节1.5.随机梯度下降o1.5.1.分类o1.5.2.回归1.5.3.稀疏数据的随机悌度下降o1.5.4.复杂度o1.5.5.实用小贴士o1.5.6.数学描述■1.5.6.1.SGDo1.5.7.实现细节1.6.最近邻o1.6.1.无监督最近邻■1.6.1.1.找到最近邻1.6.1.2. KDTree和 BallTree类1.62.最近邻分类o16.3.最近邻回归o1.6.4.最近邻算法1.64.1.暴力计算■1.6.4.2.K-D树1.64.3.Ba|树■1.6.4.4.最近邻算法的选择1.6.4.5.1 eaf size的影响o165.最近质心分类1.6.5.1.最近缩小质心1.7.高斯过程o1.7.1.高斯过程回归(GPR)o1.7.2.GPR示例1.7.2.1.具有噪声级的GPR估计1.722.GPR和内核岭回归( Kernel Ridge Regression)的比较1.7.2.3. Mauna loa co2数据中的GRRo1.7.3.高斯过程分类(GPC)o1.7.4.GPC示例1.7.4.1.GPC概率预测■1.74.2.GPC在XOR数据集上的举例说明■1.7.4.3.iris数据集上的高斯过程分类(GPC)o1.7.5.高斯过程内核1.7.5.1.高斯过程内核AP■1.7.5.2.基础内核■1.7.5.3.内核操作1.7.5.4.径向基函数内核1.7.5.5. Matern内核1.7.5.6.有理二次内核1.7.5.7.正弦平方内核1.7.58.点乘内核■1.7.5.9.参考文献o1.7.6.传统高斯过程1.7.6.1.回归实例介绍1.7.62.噪声数据拟合17.6.3.数学形式1.7.6.3.1.初始假设■1.7.6.32.最佳线性无偏预测(BLUP)1.7.6.3.3.经验最佳线性无偏估计( EBLUP)1.7.6.4.关联模型1.7.6.5.回归模型1.7.6.6.实现细节1.8.交叉分解1.9.朴素贝叶斯o1.9.1.高斯朴素贝叶斯o1.92.多项分布朴素贝叶斯1.9.3.伯努利朴素贝叶斯1.9.4.堆外朴素贝叶斯模型拟合1.10.决策树o1.10.1.分类o1.10.2.回归o1.10.3.多值输出问题o1.10.4.复杂度分析o1.10.5.实际使用技巧1.10.6.决策树算法:ID3,C4.5,c5.0和CARTo1.10.7.数学表达1.10.7.1.分类标准■1.10.7.2.回归标准1.11.集成方法o1.111. Bagging meta-estimator( Bagging元估计器)o1.11.2.由随机树组成的森林1.11.2.1.随机森林1.11.2.2.极限随机树1.11.2.3.参数1.11.24.并行化1.11.2.5.特征重要性评估1.11.2.6.完全随机树嵌入o 1.113. AdaBoost1.11.3.1.使用方法o1.114. Gradient Tree Boosting(梯度树提升)1.11.4.1.分类1.11.42.回归1.114.3.训练额外的弱学习器1.11.4.4.控制树的大小■1.11.4.5. Mathematical formulation(数学公式)■1.11.4.5.1. LoSS Functions(损失函数)1.114.6. Regularization(正则化)■1.14.6.1.收缩率( Shrinkage)■1.1.4.6.2.子采样( Subsampling)■1.11.4.7. Interpretation(解释性)1.114.7.1. Feature importance(特征重要性)1.114.7.2. Partial dependence(部分依赖)o1.11.5. Voting Classifier(投票分类器)1.115.1.多数类标等(又称为多数/硬投票)1.11.5.1.1.用法■1.11.52.加权平均概率(软投票)1.11.5.3.投票分类器( Voting Classifier)在网格搜索( Grid search)应用1.11.5.3.1.用法1.12.多类和多标签算法o1.12.1.多标签分类格式o1.12.2.1对其余1.122.1.多类学习1.122.2.多标签学习o1.12.3.1对11.12.3.1.多类别学习o1.12.4.误差校正输出代码1.12.4.1.多类别学习o1.12.5.多输出回归o1.12.6.多输出分类o1.12.7.链式分类器·1.13.特征选择1.13.1.移除低方差特征o1.13.2.单变量特征选择o1.13.3.递归式特征消除o1.13.4.使用 Select From Mode选取特征■1.13.4.1.基于L1的特征选取1.13.4.2.基于Tree(树)的特征选取1.13.5.特征选取作为 pipeline(管道)的一部分1.14.半监督学习o1.14.1.标签传播1.15.等式回归1.16.概率校准1.17.神经网络模型(有监督)o1.17.1.多层感知器o1.17.2.分类o1.17.3.回归o1.17.4.正则化o1.17.5.算法o1.17.6.复杂性o1.17.7.数学公式o1.178.实用技巧o1.17.9.使用 warm start的更多控制
    2021-05-06下载
    积分:1
  • 大气湍流退化图像复原论文及matlab实现
    这是一篇关于大气湍流退化图像复原的硕士论文,我用matlab对该论文中阐述的方法进行了仿真
    2020-12-05下载
    积分:1
  • Prim算法 matlab
    无约束条件下普列姆(Prim)算法——Matlab实现
    2020-12-08下载
    积分:1
  • 基于免疫规划的K—means聚类算法
    详细介绍了k-means算法。
    2020-12-01下载
    积分:1
  • 恒流源multisim仿真
    恒流源设计及仿真,multisim软件实现,0~20mA
    2020-11-27下载
    积分:1
  • 分布式压缩感知
    关于分布式压缩感知算法代码,很实用的算法,对于研究压缩感知的人很有用
    2020-12-03下载
    积分:1
  • Robust Statistics - 2nd Edition
    鲁棒统计,现代统计方法, Robust Statistics第二版,学习现代统计方法R○ BUST STAT|STCSSecond editionPeter j, huberProfessor of Statistics, retiredKlosters SwitzerlandEⅣ ezio m. RonchettiProfessor of StatisticsUniversity of Geneva, SwitzerlandWILEYA JOHn WileY SONS INC. PUBliCAtIONCopyrightc 2009 by John Wiley Sons, Inc. All rights reservedPublished by John Wiley sons, Inc, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form orby any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except aspermitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the priorwritten permission of the Publisher, or authorization through payment of the appropriate per-copy fee tothe Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax978)750-4470,oronthewebatwww.copyrigom. requests to the publisher for permission shouldbe addressed to the permissions department John Wiley sons, Inc., 11 1 River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp:/www.wileycom/go/permissionLimit of Liability /Disclaimer of Warranty: While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy orcompleteness of the contents of this book and specifically disclaim any implied warranties ofmerchantability or fitness for a particular purpose. No warranty may be created or extended by salesrepresentatives or written sales materials. The advice and strategies contained herein may not be suitablefor your situation. You should consult with a professional where appropriate. Neither the publisher norauthor shall be liable for any loss of profit or any other commercial damages, including but not limitedto special, incidental, consequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002.Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic format. For information about wiley products, visit our web site atwww.wileycomLibrary of Congress Cataloging-in-Publication Data:Huber Peter JRobust statistics, second edition/ Peter J. Huber, Elvezio ronchettip. cnIncludes bibliographical references and indeISBN978-0-470-12990-6( cloth)1. Robust statistics. I. Ronchetti. elvezio. II. TitleQA276.H7852009519.5-dc222008033283Printed in the United States of america10987654321To the memory o1John w. tukeyThis Page Intentionally Left BlankCONTENTSPrefacePreface to first editionGeneralities1 Why robust Procedures1. 2 What Should a robust procedure achieve?1.2.1 Robust. Nonparametric and Distribution-Free1.2.2 Adaptive procedures1.2.3 Resistant Procedures1.2. 4 Robustness versus Diagnostics1.2.5 Breakdown point1.3 Qualitative Robustness567888911. 4 Quantitative Robustness1.5 Infinitesimal Aspects141.6 Optimal Robustness171.7 Performance Comparisons18CONTENTS1.8 Computation of robust estimates181.9 Limitations to Robustness Theory202 The Weak Topology and its Metrization23eneral remarks232.2 The Weak Topology232.3 Levy and prohorov metrics272.4 The bounded Lipschitz metric322.5 Frechet and Gateaux derivatives366 Hampels Theorem413 The Basic Types of Estimates453. 1 General Remarks453.2 Maximum Likelihood Type Estimates(M-Estimates)3.2.1 Influence Function of m-estimates73.2.2 Asymptotic Properties of M-Estimates483.2.3 Quantitative and Qualitative Robustness of MEstimates3.3 Linear Combinations of Order Statistics(L-Estimates)3.3.1 Influence Function of -Estimates3.3.2 Quantitative and Qualitative robustness of l-Estimates 593. 4 Estimates Derived from Rank Tests(R-estimates3.4.1 Influence Function of R-Estimates623.4.2 Quantitative and Qualitative robustness of R-Estimates 643.5 Asymptotically Efficient M-, L,and R-Estimates674 Asymptotic Minimax Theory for Estimating Location4.1 General remarks4.2 Minimax bias4.3 Minimax Variance: Preliminaries744. 4 Distributions minimizing fisher Information764.5 Determination of Fo by Variational Methods814.6 Asymptotically Minimax M-Estimates914.7 On the minimax Property for L-and R-estimates954.8 Redescending m-estimates74.9 Questions of Asymmetric Contamination101CONTENTSScale Estimates1055.1 General remarks1055.2 M-Estimates of scale1075.3 L-Estimates of scale5.4 R-Estimates of Scale1125.5 Asymptotically efficient Scale estimates1145.6 Distributions Minimizing fisher Information for Scale5.7 Minimax Properties116 Multiparameter Problemsin Particular Joint Estimationof Location and scale1256. 1 General remarks1256.2 Consistency of M-Estimates1266.3 Asymptotic Normality of M-Estimates1306. 4 Simultaneous m-Estimates of Location and scale1336.5 M-Estimates with Preliminary Estimates of Scale1376.6 Quantitative robustness of Joint Estimates of Location and Scale 1396.7 The Computation of M-Estimates of Scale14368Studentizing1457 Regression1497. 1 General remarks1497. 2 The Classical Linear Least Squares Case1547. 2.1 Residuals and Outliers1587.3 Robustizing the Least Squares Approach1607.4 Asymptotics of robust regression Estimates163741 The Cases hp2→0 and hp→07.5 Conjectures and Empirical Results1687.5.1 Symmetric Error Distributions1687.5.2 The Question of Bias1687.6 Asymptotic Covariances and Their estimation1707. 7 Concomitant Scale estimates1727.8 Computation of Regression M-Estimates1757.8.1 The Scale Step1767.8.2 The Location Step with Modified residuals1787.8.3 The Location Step with Modified Weights179CONTENTS7.9 The Fixed Carrier Case: What Size hi?1867. 10 Analysis of Variance1907. 11 LI-estimates and Median polish1937. 12 Other Approaches to Robust Regression1958 Robust Covariance and Correlation Matrices1998. 1 General remarks8.2 Estimation of Matrix Elements Through robust Variances2038.3 Estimation of Matrix Elements Through robust Correlation2048.4 An Affinely equivariant approach2108.5 Estimates Determined by Implicit Equations2128.6 Existence and Uniqueness of Solutions2148.6. 1 The Scatter estimate v2148.6.2 The Location estimate t2198.6.3 Joint Estimation of t and y2208.7 Influence Functions and Qualitative robustness2208.8 Consistency and asymptotic normality2238.9 Breakdown Point48.10 Least informative distributions2258.1058. 10.2 Covariance2278.11 Some Notes on Computation2339 Robustness of Design2399.1 General remarks2399.2 Minimax Global Fit9.3 Minimax Slope24610 Exact Finite Sample Results24910.1 General Remarks24910.2 Lower and Upper Probabilities and Capacities25010.2.1 2-Monotone and 2-Alternating Capacities25510.2.2 Monotone and Alternating Capacities of Infinite Order 25810.3 Robust Tests25910.3. 1 Particular Cases26510.4 Sequential Tests267
    2020-12-03下载
    积分:1
  • 控制PCRat
    pcrat3.7 2011 build0426 by beckham and net_abc
    2021-05-07下载
    积分:1
  • 基于MATLAB的Filter使用,低通、带通和高通滤波器的仿真
    基于MATLAB的Filter使用,低通、带通和高通滤波器的仿真。包括filter、ftt等函数的使用
    2019-10-22下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载