-
SVMNR
支持向量机和BP神经网络虽然都可以用来做非线性回归,但它们所基于的理论基础不同,回归的机理也不相同。支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。为了验证这种观点,本文编写了支持向量机非线性回归的通用Matlab程序和基于神经网络工具箱的BP神经网络仿真模块,仿真结果证实,支持向量机做非线性回归不仅泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。
(Support Vector Machine and BP neural network, even though there can be used to make non-linear regression, but they are based on the theoretical basis for the different, the mechanism of regression is not the same. Support vector machine based on structural risk minimization theory, generally considered the generalization ability of neural networks than the strong. To test this view, the paper prepared by non-linear regression support vector machine procedures and based on a common Matlab neural network toolbox of BP neural network )
- 2021-03-03 21:59:32下载
- 积分:1
-
MISO_simulation
Multiple input single output matlab system simulation.
- 2014-09-02 19:05:23下载
- 积分:1
-
An-improved-image-compression
一种改进的图像压缩方法及其Matlab实现,希望对大家有所帮助(An improved image compression method and its Matlab, we hope to help)
- 2013-09-21 19:55:12下载
- 积分:1
-
precision-of-GPS-clock-error
GPS卫星钟差预报模型的精度评定,如:线性拟合模型、带有周期项的线性拟合模型、二次项拟合模型、带有周期项的二次项拟合模型等。(Accuracy Evaluation GPS satellite clock error prediction model, such as: linear fitting model, linear fitting model with periodic term, quadratic fitting model, fitted with a quadratic term cycle models.)
- 2017-03-13 15:37:13下载
- 积分:1
-
软硬阈值函数及示例
说明: 小波阈值滤波去噪算法中,使用的软硬阈值函数、改进半软阈值函数及示例(In wavelet threshold filtering denoising algorithm, the soft and hard threshold function, improved semi soft threshold function and examples are used)
- 2021-03-11 16:03:32下载
- 积分:1
-
liusiqam
六十四QAM调制解调器,实现星座映射解映射(64QAM encoder)
- 2010-10-17 18:53:09下载
- 积分:1
-
三相电压源变换器模型
在该例中使用通用桥块的三个电压源变换器 (VSC) 模型进行了比较。每个模型是用 SPWM 脉冲发生器在开环控制的。
- 2022-02-06 11:06:10下载
- 积分:1
-
sift matlab 图像匹配
可以用来进行图像分割,目标识别等用途,是sift算法核心代码。不过也是只是一部分好像
- 2022-05-23 21:20:18下载
- 积分:1
-
Ada_Boost
matlab实现的adaboost的代码。(matlab code AdaBoost achieved.)
- 2007-09-18 22:37:54下载
- 积分:1
-
matlab70primero
matlab para iniciarse
- 2012-05-30 06:34:23下载
- 积分:1