-
用神经网络算法求解tsp问题。。。matlab编写。附有城市坐标用于检验。...
用神经网络算法求解tsp问题。。。matlab编写。附有城市坐标用于检验。 -Using neural network algorithm for solving the problem tsp. . . matlab prepared. Coordinate with the city for inspection.
- 2022-12-25 21:35:03下载
- 积分:1
-
Kohonen the SOFM (self
Kohonen的SOFM(自组织特征映射):这种算法部分收到生物特征影响,在网络输出层内按几何中心或特征进行聚类。-Kohonen the SOFM (self-organizing feature map) : This algorithm received some biological features, the output layer to the network within the geometric center or cluster features.
- 2022-07-13 21:00:17下载
- 积分:1
-
maximum function for the genetic algorithm source code Matlab
求解函数最大值的遗传算法Matlab源代码-maximum function for the genetic algorithm source code Matlab
- 2022-03-17 20:59:08下载
- 积分:1
-
Tutorial for Boosting algorithm by Schapire
Schapire 所著的Boosting算法的教程。
对目前物体识别和机器学习领域中广泛应用的Boosting算法展开了深入浅出的描述,还有很多Toy Examples。-Tutorial for Boosting algorithm by Schapire
- 2023-04-22 16:20:03下载
- 积分:1
-
人工智能的一种典型的启发式搜索算法,是一种最好优先的算法,但要加上一些约束条件。...
人工智能的一种典型的启发式搜索算法,是一种最好优先的算法,但要加上一些约束条件。-A typical artificial intelligence heuristic search algorithm, is a priority of the best algorithm, but to add some more restrictive conditions.
- 2023-07-26 14:05:03下载
- 积分:1
-
人工智能编程示例
人工智能编程示例-artificial intelligence programming paradigm
- 2023-05-19 01:55:03下载
- 积分:1
-
用于求解TSP问题的c++程序,已经试运行过
用于求解TSP问题的c++程序,已经试运行过-BasicAntColon AlgorithmC++forTSP
- 2022-04-02 03:26:42下载
- 积分:1
-
该过程是基于网络的控制系统。系统由O组成。
该程序是基于BP网络的PID控制系统。系统由两部分构成:经典的PID控制器和神经网络。-that the procedure was based on BP network PID control system. System consists of two parts : the classic PID controller and neural networks.
- 2022-02-04 15:04:38下载
- 积分:1
-
混合智能算法,采用visual c++语言编写,注释完整,清晰易懂
java extreme programming cookbook
- 2023-06-14 21:45:10下载
- 积分:1
-
贝叶斯算法是基于贝叶斯定理 P(H|X) = P(X|H)P(H) / P(X).。对于多属性的数据集,计算 P(X|Ci) 的开销非常大,为减低计算复杂度,我...
贝叶斯算法是基于贝叶斯定理 P(H|X) = P(X|H)P(H) / P(X).。对于多属性的数据集,计算 P(X|Ci) 的开销非常大,为减低计算复杂度,我们做条件独立的假设,即给定元组的类标号,假定属性值有条件地相互独立,即在属性间不存在依赖关系。此程序仅为算法的一个实现,根据训练数据训练分类器-Bayesian algorithm is based on the Bayes theorem P (H | X) = P (X | H) P (H)/P (X).. For multi-attribute data sets, computing P (X | Ci) of the overhead is very large, in order to reduce the computational complexity, we do conditional independence assumption that a given tuple class label, it is assumed that property values conditionally independent of each other, that does not exist in the inter-attribute dependencies. This procedure is only an implementation of algorithm, according to training data classifier training
- 2023-08-27 07:10:03下载
- 积分:1