登录
首页 » Matlab » 曲面高度拟合算法

曲面高度拟合算法

于 2022-06-12 发布 文件大小:3.64 MB
0 73
下载积分: 2 下载次数: 1

代码说明:

曲面高度拟合算法,将平面切分为上下两个三角。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • entropy_core
    Using entropy to align fingerprints in fingerprint verification
    2009-09-29 23:31:41下载
    积分:1
  • EgT
    Temperature Dependance of Binary Nitrides
    2010-10-31 12:19:06下载
    积分:1
  • dyq111
    关于分形压缩的matlab代码。采用的算法固定分块的算法。适合初学者。(On fractal compression matlab code. The algorithm uses a fixed block of the algorithm. Suitable for beginners.-)
    2010-12-01 14:10:15下载
    积分:1
  • PARALLEL-PORT-CONTROLLER-USING-MATLAB
    controling stepmotors using matlab
    2012-06-03 21:12:09下载
    积分:1
  • DRSHE
    Dynamic Range Separate HE
    2013-08-21 09:52:22下载
    积分:1
  • DNN
    说明:  深度神经网络DNN,可用于多目标的最优规划问题。(The deep neural network DNN can be used for multi-objective optimal planning problems.)
    2021-03-02 17:18:18下载
    积分:1
  • circconv
    circular convolution of signals
    2011-02-04 23:44:18下载
    积分:1
  • Backtracking
    利用回溯法来求解凸函数的最优值。采用非精确线性搜索,利用最少的迭代次数找到最优值。(backtracking method,change the step size in searching procesure and finally find the optimizaiton points. )
    2011-09-16 23:38:17下载
    积分:1
  • display_signal
    基于matlab-GUI制作的数字通信信号的调制仿真,包括时域、功率谱显示,仿真的调制方式有:ASK、FSK、PSK、QPSK、OQPSK、1/4piQPSK、8PSK、MSK,比较直观易懂,可供需要的同胞参考(this process mainly simulate varity of digital signal modulation,such as ASK、FSK、PSK、QPSK、OQPSK、1/4piQPSK、8PSK、MSK)
    2012-01-06 11:25:35下载
    积分:1
  • 聚类-k均值算法
    K-means算法是基于划分的思想,因此算法易于理解且实现方法简单易行,但需要人工选择初始的聚类数目即算法是带参数的。类的数目确定往往非常复杂和具有不确定性,因此需要专业的知识和行业经验才能较好的确定。而且因为初始聚类中心的选择是随机的,因此会造成部分初始聚类中心相似或者处于数据边缘,造成算法的迭代次数明显增加,甚至会因为个别数据而造成聚类失败的现象。(K-means algorithm is based on the idea of partitioning, so the algorithm is easy to understand and the implementation method is simple and feasible, but it requires manual selection of the initial number of clusters, that is, the algorithm is with parameters. The number of classes is often very complex and uncertain, so professional knowledge and industry experience are needed to better determine. Moreover, because the selection of initial clustering centers is random, some initial clustering centers will be similar or at the edge of data, resulting in a significant increase in the number of iterations of the algorithm, and even the phenomenon of clustering failure due to individual data.)
    2020-06-21 17:40:01下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载