登录
首页 » python » 机器学习PDE

机器学习PDE

于 2022-07-07 发布 文件大小:1.03 kB
0 140
下载积分: 2 下载次数: 1

代码说明:

用matlab实现图像的超分辨率重建。内含测试图像,运行test.m文件可直接得到结果,希望对大家有所帮助。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • XGBoost
    说明:  使用XGB算法对旅客航空信息进行特征筛选,分析,分类处理。(The XGB algorithm is used for feature screening, analysis and classification of passenger aviation information.)
    2020-11-30 13:50:28下载
    积分:1
  • tensorflow_examples
    This is tensorflow example source code
    2020-11-27 16:09:29下载
    积分:1
  • xgboost算法
    说明:  利用xgboost对多变量结果进行预测分析的学习,建立模型(Using xgboost to study the prediction and analysis of multivariate results and build a model)
    2020-11-23 15:29:34下载
    积分:1
  • 均匀化理论的结果
    说明:  均匀化理论的结果读取文件,可以直接读取刚度矩阵(The result of homogenization theory reads the file, and the stiffness matrix can be read directly.)
    2020-06-23 07:40:02下载
    积分:1
  • Coursera
    说明:  实现强化学习,完成人工智能,实现机器学习,掌握分类算法(Realize reinforcement learning, artificial intelligence, machine learning and deep learning)
    2021-03-24 09:02:40下载
    积分:1
  • CVIU_2
    说明:  面部地标检测旨在定位给定特征点的面部图像的关键点,这些特征点通常遭受由任意姿势,不同面部表情和部分遮挡引起的变化。我们提出了一个粗到细的框架,它将堆叠的沙漏网络和显着区域的注意力细化联系起来,以实现稳健的面部对齐。为了实现这一目标,我们首先提出了一个多尺度区域学习模块(MSL)来分析不同面部区域的结构信息,并提取强烈的判别性深层特征。然后我们采用堆叠沙漏网络(SHN)进行热图回归和初始面部地标预测。(Facial landmark detection aims to locate keypoints for a facial image given feature points, which typically suffers from variations caused by arbitrary pose, diverse facial expressions, and partial occlusion. We put forward a coarse-to-fine framework which joints stacked hourglass network and salient region attention refinement for robust face alignment. In order to achieve this goal, we firstly put forward a multi-scale region learning module (MSL) to analyze the structure information at different facial region and extract strong discriminative deep feature. Then we employ stacked hourglass network (SHN) for heatmap regression and initial facial landmarks prediction.)
    2020-06-20 11:00:02下载
    积分:1
  • CNN_Pavia-master
    说明:  使用卷积神经网络进行高光谱遥感数据分类,使用的数据源为Pavia University高光谱数据 文件夹log--日志文件夹,存放TensorBorad日志、网络参数文件、混淆矩阵图 文件夹Patch--存放数据处理的切片结果 文件夹PaviaU--高光谱数据下载存放位置 文件夹predicted--CNN对原始影像的分类结果 data.py--对原始高光谱影像进行数据处理,生成切片 net.py--神经网络模型 train.py--训练神经网络 utils.py--需要用到的函数 show.py--使用训练好的神经网络模型对原始数据进行分类(Using convolution neural network to classify hyperspectral remote sensing data, the data source is Pavia University hyperspectral data. Folder log -- Log folder, store TensorBorad logs, network parameter files, obfuscation matrix diagrams Folder Patch -- Stores slice results of data processing Folder PaviaU -- Place for Hyperspectral Data Download and Storage Folder predicted -- CNN classification results of original images Data.py -- Data processing of original hyperspectral images to generate slices Net.py--Neural Network Model Train.py--Training Neural Network Utils. py -- Functions to be used Show.py -- Classification of raw data using trained neural network model)
    2020-11-02 14:09:53下载
    积分:1
  • 随机森林
    说明:  使用随机森林回归数据,给出数据的重要性和预测(Using random forest regression data, give the importance and prediction of the data)
    2021-01-20 21:16:43下载
    积分:1
  • LSTM程序
    说明:  基于LSTM的时间序列预测-原理-python代码(Prediction of time series based on LSTM - principles -python code)
    2019-07-05 17:43:54下载
    积分:1
  • 3ee22f38ek09d180d8adbee5c8596f01
    说明:  学习资料,仅供参考,好好学习,多多益善,日积月累,逆水行舟,能者上。(Learning materials, for reference only, study hard, more good, accumulated over time, sailing against the current, capable people.)
    2020-05-05 22:19:06下载
    积分:1
  • 696518资源总数
  • 106208会员总数
  • 21今日下载