-
Common Interface Hardware Inside
Common Interface Hardware Inside-Common Interface Hardware Inside
- 2022-03-10 05:52:52下载
- 积分:1
-
通信工程建设监理工程师考试的培训详细教材。
通信工程建设监理工程师考试的培训详细教材。-Communication Engineering Construction Supervision Engineer detailed examination of the training materials.
- 2023-02-13 10:20:06下载
- 积分:1
-
里面三本书,两本是清华大学出版的计算流体力学,另外一本是Fundamentals of Computational Fluid。对搞CFD的人很有用。...
里面三本书,两本是清华大学出版的计算流体力学,另外一本是Fundamentals of Computational Fluid。对搞CFD的人很有用。-Inside the three books, two are published in Computational Fluid Dynamics, Tsinghua University, another one is the Fundamentals of Computational Fluid. Of those who engage in CFD useful.
- 2022-03-16 01:37:36下载
- 积分:1
-
GLONASS的坐标计算
GLONASS coords computation
- 2022-07-12 13:17:45下载
- 积分:1
-
一个关于activex制作的不错的事例程序!!
一个关于activex制作的不错的事例程序!!
-Activex produced a good example of the procedure! !
- 2022-10-23 01:35:04下载
- 积分:1
-
Visual C++实践与提高系列丛书
Visual C++实践与提高系列丛书-COM&COM+(源代码)-Visual C Practice and improve Series-COMCOM (source code)
- 2022-08-16 12:31:00下载
- 积分:1
-
自动关闭和重启计算级的程序
用vc代码实现 代码简洁
自动关闭和重启计算级的程序
用vc代码实现 代码简洁
-Automatic shutdown and restart procedure for calculating using vc code-level implementation code clean
- 2022-01-21 22:08:10下载
- 积分:1
-
条码打印控件 SetBarCodeName(Str As String) 设置条码标题 GetBarCodeName 获得条码标题 SetBarCodeValu...
条码打印控件 SetBarCodeName(Str As String) 设置条码标题 GetBarCodeName 获得条码标题 SetBarCodeValue(Str As String) 设置条码数据 GetBarCodeValue 获得条码数据 SetVisible(V As Boolean) 标题是否显示-barcode printing controls SetBarCodeName (Str As String) to install the barcode was heading GetBarCodeName barcode heading SetBarCodeValue (Str As String) to install barcode data GetBarCodeValue was barcode data SetVisible (V As Boolean) whether the title indicates
- 2023-05-11 14:50:03下载
- 积分:1
-
获得计算机CPU的详细信息
获得计算机CPU的详细信息-computer access to the detailed information CPU
- 2023-04-22 08:45:03下载
- 积分:1
-
题目:若要在n个城市之间建立通信网络,只需要假设n-1条线路即可。如何以最低的经济代价建设这个通信网,是一个网的最小生成树问题。...
题目:若要在n个城市之间建立通信网络,只需要假设n-1条线路即可。如何以最低的经济代价建设这个通信网,是一个网的最小生成树问题。-topics : n if the city between communication networks, need only assume that n-1 line can be. How the lowest economic cost of building the communications network, the network is a minimum spanning tree problem.
- 2022-02-26 11:10:41下载
- 积分:1