登录
首页 » Matlab » realize overlapped

realize overlapped

于 2022-09-17 发布 文件大小:876.00 B
0 58
下载积分: 2 下载次数: 1

代码说明:

realize overlapped-add method %[y]=overlpadd(x,h,Nfft) %y:output sequence %x:input sequence %h:filter impulse response sequence %Nfft:points of each DFT operation %重叠相加法实现分段卷积-realize overlapped-add method% [y] = over lpadd (x, h, Nfft)% y : x% output sequence : % h input sequence : impulse response filter% Nfft sequence : DFT points of each operation% of the sum of overlapping sub-convolution Method

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • fuhuatixing
    采用matlab编写的复化梯形公式求解方程(Trapezoid formula and solve complex equations)
    2010-11-27 11:30:45下载
    积分:1
  • wave_peak
    说明:   该函数用于读取ecg信号,找到小波变换模极大序列,及按级给出概貌和细节的波形(This function is used to read the ecg signal sequence found on wavelet transform modulus maxima, and by level overview and details of the waveform is given)
    2011-04-06 19:59:17下载
    积分:1
  • system_identification_and_control
    system identification and DMC control of a debutanizer plant
    2010-05-27 04:03:36下载
    积分:1
  • EARB1
    EARLANG B MATLAB CODE IN TELECOM
    2013-10-05 00:35:02下载
    积分:1
  • 5-3-3
    exersice of marcel sidi
    2013-09-07 19:31:21下载
    积分:1
  • MATLAB
    连杆,主要是四杆机构的仿真,界面设计,以及返回函数的编写,和文本框的设置(Kinetic analysis and dynamic simulation of the planar rod robot in the MATLAB Simulink-based)
    2012-05-08 19:46:47下载
    积分:1
  • Matlab-intro
    此文介绍了matlab的在系统仿真方面应用,以及如何利用simulink进行系统仿真(the document concerns with the study of matlab)
    2011-06-22 14:08:05下载
    积分:1
  • fem_basis-Matlab
    fem matlab method to solve linear equations
    2011-10-24 15:55:52下载
    积分:1
  • Fuzzy-Neural-Network-by-matlab
    这是一个四个不同的S函数实现集合的递归模糊神经网络(RFNN)。该网络采用了4组可调参数,这使得它非常适合在线学习/操作,从而可应用到系统识别等方面。(This is a collection of four different S-function implementations of the recurrent fuzzy neural network (RFNN) described in detail in [1]. It is a four-layer, neuro-fuzzy network trained exclusively by error backpropagation at layers 2 and 4. The network employs 4 sets of adjustable parameters. In Layer 2: mean[i,j], sigma[i,j] and Theta[i,j] and in Layer 4: Weights w4[m,j]. The network uses considerably less adjustable parameters than ANFIS/CANFIS and therefore, its training is generally faster. This makes it ideal for on-line learning/operation. Also, its approximating/mapping power is increased due to the employment of dynamic elements within Layer 2. Scatter-type and Grid-type methods are selected for input space partitioning.)
    2021-02-13 01:19:50下载
    积分:1
  • Q_switch_Erglass_work
    计算被动调Q输出特性,光子数、反转粒子数分布等(caculated passive Q-switch)
    2015-04-11 13:35:41下载
    积分:1
  • 696518资源总数
  • 105578会员总数
  • 20今日下载