-
THE FINITE
THE FINITE-DIFFERENCE TIME-DOMAIN
(FDTD) PART IV
The Perfectly Matched Layer (PML) Absorbing
Boundary Condition
-THE FINITE-DIFFERENCE TIME-DOMAIN
(FDTD) PART IV
The Perfectly Matched Layer (PML) Absorbing
Boundary Condition
- 2022-05-16 05:40:54下载
- 积分:1
-
卡尔曼滤波实验程序
卡尔曼滤波是解决以均方误差最小为准则的最佳线性滤波问题,它根据前一个估计值和最近一个观察数据来估计信号的当前值。它是用状态方程和递推方法进行估计的,而它的解是以估计值(常常是状态变量的估计值)的形式给出其信号模型是从状态方程和量测方程得到的。
卡尔曼过滤中信号和噪声是用状态方程和测量方程来表示的。因此设计卡尔曼滤波器要求已知状态方程和测量方程。它不需要知道全部过去的数据,采用递推的方法计算,它既可以用于平稳和不平稳的随机过程,同时也可以应用解决非时变和时变系统,因而它比维纳过滤有更广泛的应用。
- 2022-05-06 12:28:34下载
- 积分:1
-
C语言实现复数型矩阵求逆
C语言实现复数型矩阵求逆
-C language plural-matrix inversion C language plural-matrix inversion
- 2022-08-23 21:05:02下载
- 积分:1
-
Linux C数据结构程序
数据结构基础学习,按照工程要求,实现数据结构的开发,包括头文件、源程序、测试例程及makefile,是初学数据结构的最好例子。对于C语言的提高有很大帮助。
线性表是数据结构的基础,这里才有顺序和链式两种方式实现线性表。具有代表意义。
- 2023-06-05 22:35:03下载
- 积分:1
-
全选主元高斯消去法agaus.c
全选主元高斯消去法agaus.c--返回零表示原方程组的系数矩阵奇异,返回的标志值不为零,则表示正常返回。-entire election PCA Gaussian Elimination agaus.c--return to the original equation is expressed by the coefficient matrix, a sign of the return value is not zero, then returned to normal.
- 2023-04-20 17:05:03下载
- 积分:1
-
bp算法
bp算法-bp algorithm.
- 2022-09-30 19:40:04下载
- 积分:1
-
75个城市坐标的优化问题
75个城市坐标的优化问题-75 cities coordinates the optimization problem
- 2022-03-23 03:14:08下载
- 积分:1
-
这是一个用于生成等值线的源代码,程序根据输入的高程文本文件,自动跟踪等值点,并生成相应的等值线。
这是一个用于生成等值线的源代码,程序根据输入的高程文本文件,自动跟踪等值点,并生成相应的等值线。- This is uses in to produce the equivalent line the source code,
the elevation text documents which the procedure basis inputs,
automatic tracking equivalent spot, and production corresponding
equivalent line.
- 2022-09-03 23:25:03下载
- 积分:1
-
完整而高效的凸包求解方法,
资源描述该算法课通过解压运行QHULL-GO快捷方式,在命令行窗口输入相应的命令,即可计算convex hull, Delaunay triangulation, Voronoi diagram, halfspace intersection about a point, furthest-site Delaunay triangulation, and furthest-site Voronoi diagram。并且代码还可以求解2维、3维甚至更高维的数据计算。是一个开放的源码算法,凝聚了很多大牛的心血,希望对大家有所帮助。
- 2022-08-09 17:36:53下载
- 积分:1
-
MOEA framework
应用背景The MOEA Framework is a free and open source Java library for developing and
experimenting with multiobjective evolutionary algorithms (MOEAs) and other
general-purpose multiobjective optimization algorithms. The MOEA Framework
supports genetic algorithms, differential evolution, particle swarm
optimization, genetic programming, grammatical evolution, and more. A number of
algorithms are provided out-of-the-box, including NSGA-II, NSGA-III, ε-MOEA,
GDE3 and MOEA/D. In addition, the MOEA Framework provides the tools necessary
to rapidly design, develop, execute and statistically test optimization
algorithms.关键技术Its key features includes:
* Fast, reliable implementations of many state-of-the-art algorithms
* Extensible with custom algorithms, problems and operators
* Supports master-slave, island-model, and hybrid parallelization
&n
- 2022-02-28 22:09:39下载
- 积分:1