-
Matlab-in-image-processing-source
Matlab在图像处理中的应用源代码:源程序和素材(Matlab application in image processing source: source program and the material
)
- 2011-04-24 12:37:00下载
- 积分:1
-
bpsk
BPSK zip filr encoder
- 2011-05-04 13:35:39下载
- 积分:1
-
OFDM
OFDM通信系统性能仿真,包括PAPR抑制、同步算法、编码、上下变频、高斯信道建模等(OFDM communication system simulation, including the PAPR suppression, synchronization algorithm, coding, frequency up and down, Gaussian channel model)
- 2013-04-21 22:02:06下载
- 积分:1
-
VRS
vibration analysis of induction motor
- 2011-10-03 17:17:19下载
- 积分:1
-
bisection
how to compute the roots using matlab by bisection method
- 2010-05-05 17:19:55下载
- 积分:1
-
four-axis-simulation
利用matlab工具中的robotic toolbox建立了一个四轴机械手仿真(The robotic toolbox matlab tools to create a four-axis robot simulation)
- 2013-03-14 16:41:46下载
- 积分:1
-
ch6example9prog1
PCM 编解码模型,信道是无噪声的,u=255,以正弦波作为测试(PCM codec model, the channel is noise-free, u = 255, as a sine wave test)
- 2014-11-28 14:32:16下载
- 积分:1
-
zishiying
MATLAB最陡下降法自适应滤波器的数据,以及处理程序·(MATLAB method of steepest descent adaptive filter data, and processing)
- 2010-12-27 14:22:01下载
- 积分:1
-
matlabcontrol
几个控制理论的小程序,可以方便学习自动控制理论这门课(Can easily end the camera to the image transmitted matlab program for the software called.)
- 2010-05-06 01:30:41下载
- 积分:1
-
Relevance-Vector-Machine
说明: 相关向量机(Relevance Vector Machine,简称RVM)是Micnacl E.Tipping于2000年提出的一种与SVM(Support Vector Machine)类似的稀疏概率模型,是一种新的监督学习方法。
它的训练是在贝叶斯框架下进行的,在先验参数的结构下基于主动相关决策理论(automatic relevance determination,简称ARD)来移除不相关的点,从而获得稀疏化的模型。在样本数据的迭代学习过程中,大部分参数的后验分布趋于零,与预测值无关,那些非零参数对应的点被称作相关向量(Relevance Vectors),体现了数据中最核心的特征。同支持向量机相比,相关向量机最大的优点就是极大地减少了核函数的计算量,并且也克服了所选核函数必须满足Mercer条件的缺点。(Relevance Vector Machine (RVM) is a sparse probability model similar to SVM (Support Vector Machine) proposed by Micnacl E. Tipping in 2000. It is a new supervised learning method.
Its training is carried out under the Bayesian framework. Under the structure of prior parameters, it is based on Automatic Relevance Determination (ARD) to remove the irrelevant points, so as to obtain the sparse model. In the iterative learning process of sample data, the posterior distribution of most parameters tends to zero, which is independent of the predicted value. The points corresponding to non-zero parameters are called Relevance Vectors, which represent the most core features of the data. Compared with support vector machine, the biggest advantage of correlation vector machine is that it greatly reduces the computation amount of kernel function, and also overcomes the shortcoming that the selected kernel function must meet Mercer's condition.)
- 2021-03-23 21:20:53下载
- 积分:1