登录
首页 » JavaScript » MATLAB-Central-File-Exchange--YALMIP

MATLAB-Central-File-Exchange--YALMIP

于 2011-01-20 发布 文件大小:756KB
0 226
下载积分: 1 下载次数: 19

代码说明:

  解决整数线性规划的yalmip工具箱,比较好用的(Solve the integer linear programming yalmip toolbox, more useful)

文件列表:

yalmip
......\@sdpvar
......\.......\abs.m,2808,2005-11-24
......\.......\and.m,2373,2006-04-28
......\.......\any.m,222,2006-07-26
......\.......\assign.m,1598,2006-08-09
......\.......\binary.m,869,2004-07-06
......\.......\blkdiag.m,2203,2006-07-26
......\.......\bounds.m,1191,2006-05-11
......\.......\brutepersp.m,300,2006-03-16
......\.......\cat.m,294,2006-06-08
......\.......\ceil.m,1290,2006-07-26
......\.......\circshift.m,424,2006-07-26
......\.......\clean.m,954,2006-07-26
......\.......\clearsdpvar.m,406,2004-07-01
......\.......\cone.m,984,2006-04-21
......\.......\conj.m,214,2006-01-26
......\.......\Contents.m,6673,2004-07-06
......\.......\conv.m,451,2006-07-26
......\.......\ctranspose.m,445,2006-07-26
......\.......\cut.m,739,2004-07-01
......\.......\degreduce.m,628,2004-10-04
......\.......\degree.m,1627,2004-07-01
......\.......\depends.m,496,2005-04-14
......\.......\det.m,1145,2006-07-26
......\.......\diag.m,720,2006-07-26
......\.......\diff.m,1969,2006-07-26
......\.......\display.m,6211,2006-07-26
......\.......\domain.m,925,2006-03-22
......\.......\double.m,9340,2006-07-26
......\.......\eig.m,1839,2005-04-29
......\.......\end.m,536,2006-07-26
......\.......\eq.m,282,2006-05-17
......\.......\exp.m,1984,2006-03-12
......\.......\expanded.m,215,2006-08-09
......\.......\exponents.m,394,2006-05-13
......\.......\extractkyp.m,282,2004-07-01
......\.......\false.m,378,2005-02-10
......\.......\find.m,208,2005-10-18
......\.......\fliplr.m,340,2006-07-26
......\.......\flipud.m,340,2006-07-26
......\.......\floor.m,1270,2006-07-26
......\.......\ge.m,282,2005-06-17
......\.......\generateAB.m,942,2006-07-26
......\.......\geomean.m,4536,2006-04-06
......\.......\getbase.m,202,2005-10-12
......\.......\getbasematrix.m,465,2006-07-26
......\.......\getbasematrixwithoutcheck.m,298,2006-07-26
......\.......\getbasevectorwithoutcheck.m,271,2004-07-01
......\.......\gethackflag.m,197,2004-07-01
......\.......\getsosrank.m,185,2005-07-18
......\.......\getvariables.m,1297,2004-10-04
......\.......\getvariablesvector.m,261,2004-08-02
......\.......\gt.m,281,2005-06-17
......\.......\hankel.m,507,2006-02-04
......\.......\homogenize.m,842,2006-01-26
......\.......\horzcat.m,2626,2006-07-26
......\.......\imag.m,815,2006-04-13
......\.......\integer.m,877,2004-07-06
......\.......\is.m,5723,2006-07-26
......\.......\isconvex.m,1112,2005-10-05
......\.......\isequal.m,246,2004-07-01
......\.......\ishermitian.m,789,2006-07-26
......\.......\isinteger.m,236,2004-07-01
......\.......\islinear.m,730,2004-07-02
......\.......\ismember.m,2196,2006-07-26
......\.......\ismember_internal.m,2281,2006-07-26
......\.......\isreal.m,160,2004-07-01
......\.......\issymmetric.m,481,2006-07-26
......\.......\jacobian.m,507,2004-09-15
......\.......\kron.m,1261,2006-07-26
......\.......\kyp.m,883,2005-01-20
......\.......\le.m,282,2005-06-17
......\.......\length.m,149,2006-07-26
......\.......\loadobj.m,1585,2006-05-13
......\.......\log.m,1947,2006-03-13
......\.......\log10.m,1949,2006-03-12
......\.......\log2.m,1947,2006-03-12
......\.......\lt.m,281,2005-06-17
......\.......\max.m,3375,2006-07-26
......\.......\median.m,1974,2006-05-16
......\.......\min.m,3805,2006-07-26
......\.......\minus.m,6997,2006-07-26
......\.......\mldivide.m,773,2006-07-26
......\.......\model.m,2095,2006-07-28
......\.......\mpower.m,4183,2006-07-26
......\.......\mrdivide.m,1321,2006-07-26
......\.......\mtimes.m,19799,2006-07-26
......\.......\ne.m,773,2005-12-13
......\.......\nnz.m,1548,2006-05-14
......\.......\nonlineartocone.m,2017,2004-07-02
......\.......\norm.m,11955,2006-07-26
......\.......\not.m,421,2005-02-10
......\.......\numel.m,174,2006-07-26
......\.......\or.m,2493,2006-04-28
......\.......\parametric.m,604,2006-08-08
......\.......\plot.m,3385,2006-07-11
......\.......\plus.m,5644,2006-07-26
......\.......\polynomial.m,677,2006-05-15
......\.......\pow10.m,1954,2006-05-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • retmp
    该法是经过改进的基于象素匹配的方法并且还含有图片,对进行景象匹配的朋友有所帮助(The Act are improved pixel-based matching method and also contains a picture of the scene matching to help a friend)
    2009-03-24 10:00:32下载
    积分:1
  • Incomplete
    Add pilot symbols to the input data just before transmission 2. Implement cyclic prefix (CP), use 10 of symbol length. Divide the 64 input data points into 8-bit streams, generate and append the CP based on each symbol 3. Include complex noise into transmitted signal Organization of Transmitter end of OFDM System a. Generate Data b. Modulate c. Serial to Parallel d. Cyclic Prefix (CP) e. Add Pilot points f. IFFT g. Parallel to Serial
    2010-05-23 22:09:45下载
    积分:1
  • Chapter1
    数据测试,数据分析,数据还原,数据载入。(Data testing, data analysis, data reduction, data load.)
    2014-11-29 15:13:20下载
    积分:1
  • leach5
    matlab实现经典的leach(无线传感器网络簇头选择协议)算法(leach algorithm)
    2012-04-23 18:51:38下载
    积分:1
  • Securing-at-the-Physical-Layer
    通过物理层技术的设计实现无线通信的保密。(Securing Wireless Communications at the Physical layer)
    2011-11-14 10:19:34下载
    积分:1
  • PMSM_PI2018a
    说明:  在simulink中搭建永磁同步电机模型,并采用三环控制对其进行位置控制。(The permanent magnet synchronous motor model is built in Simulink, and its position is controlled by three loop control.)
    2021-03-17 20:59:21下载
    积分:1
  • Relevance-Vector-Machine
    说明:  相关向量机(Relevance Vector Machine,简称RVM)是Micnacl E.Tipping于2000年提出的一种与SVM(Support Vector Machine)类似的稀疏概率模型,是一种新的监督学习方法。 它的训练是在贝叶斯框架下进行的,在先验参数的结构下基于主动相关决策理论(automatic relevance determination,简称ARD)来移除不相关的点,从而获得稀疏化的模型。在样本数据的迭代学习过程中,大部分参数的后验分布趋于零,与预测值无关,那些非零参数对应的点被称作相关向量(Relevance Vectors),体现了数据中最核心的特征。同支持向量机相比,相关向量机最大的优点就是极大地减少了核函数的计算量,并且也克服了所选核函数必须满足Mercer条件的缺点。(Relevance Vector Machine (RVM) is a sparse probability model similar to SVM (Support Vector Machine) proposed by Micnacl E. Tipping in 2000. It is a new supervised learning method. Its training is carried out under the Bayesian framework. Under the structure of prior parameters, it is based on Automatic Relevance Determination (ARD) to remove the irrelevant points, so as to obtain the sparse model. In the iterative learning process of sample data, the posterior distribution of most parameters tends to zero, which is independent of the predicted value. The points corresponding to non-zero parameters are called Relevance Vectors, which represent the most core features of the data. Compared with support vector machine, the biggest advantage of correlation vector machine is that it greatly reduces the computation amount of kernel function, and also overcomes the shortcoming that the selected kernel function must meet Mercer's condition.)
    2021-03-23 21:20:53下载
    积分:1
  • LinearNewmark
    在结构动力学中,动力方程分析的newmark方法。(A newmark method for analysis of dyanimic equation)
    2010-01-19 22:05:20下载
    积分:1
  • 5-_-Exolete
    Lattice Boltzmann Matlab Scripts 2-D Model of Porous Medium Flows
    2014-09-02 13:14:53下载
    积分:1
  • cat-map
    cat map function to scramble a one dimentson sequence
    2013-12-09 07:47:27下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载