登录
首页 » matlab » xiaobo

xiaobo

于 2010-04-21 发布 文件大小:35KB
0 149
下载积分: 1 下载次数: 2

代码说明:

说明:  对一个二阶模型模型进行脉冲响应辨识,并且通过搭建simulink模型取得了两组输入-输出数据,一组是在有高斯噪声的干扰下获得u1-y3,另外一组是在没有高斯噪声的情况下获得的u1-y1,对这两组数据进行基于haar小波基的脉冲响应辨识,与实际模型的脉冲响应相比较(注:三个excel表必须放在matlab/work文件夹下才能运行)(Second-order model to a model of impulse response identification, and achieved through building simulink model for two groups of input- output data, a Gaussian noise in the interference with access to u1-y3, another group in the absence of Gaussian noise of access to the u1-y1, these two sets of data haar Wavelet-based impulse response identification, and the actual model of the impulse response comparison (Note: Three excel table must be on the matlab/work folder to run ))

文件列表:

上传程序\u1.xls
上传程序\xiaobo1.m
上传程序\y1.xls
上传程序\y3.xls
上传程序

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Cognitive_Radio
    cognitive radio system matlab simulation
    2009-05-04 11:49:36下载
    积分:1
  • NewFolder
    thiscodeisfortransmiiter
    2010-12-07 19:09:38下载
    积分:1
  • circle_fit
    说明:  圆拟合,通过已知的多组数据,拟合出最小误差的圆(Given a set of measured x,y pairs that a re supposed to reside on a circle, but with some added noise. A circle to these points, i.e. find xc,yc,R, such that (x-xc)^2+(y-yc)^2=R^2)
    2009-08-27 06:38:28下载
    积分:1
  • 使用M&M算法进行载波频偏估计 MM
    使用M&M算法进行载波频偏估计,主要应用于dvb-s2中(M &M algorithm with carrier frequency offset estimation, mainly used in the dvb-s2)
    2020-06-27 04:40:01下载
    积分:1
  • perceptron
    线性分类器设计-感知机算法,对一组数据进行分类,分析w不同时的影响(Linear classifier design- Perceptron Algorithm)
    2010-05-24 23:04:41下载
    积分:1
  • MATLAB-biancheng
    matlab编程教程。从最基本的matlab知识介绍开始,最后涉及到程序设计(matlab programming tutorial. Introduced, and finally it comes to programming from the most basic Matlab knowledge)
    2012-03-31 17:35:22下载
    积分:1
  • adaboost
    3D姿态识别的adaboost代码,使用matlab语言编写(A Study of AdaBoost in 3D Gesture Recognition)
    2011-08-30 17:26:42下载
    积分:1
  • Technical-indicators-by-Matlab
    用matlab编写了20几个常见的技术指标,方便大家开发策略时候,直接调用。 1)编写这些函数不是技术活,完全是体力活 2)之所以编写这些函数,一来是自己研究所需,二来自己编写过程中能够感悟到蕴含在公式中的思想 3)几乎所有函数,我都用数据测试过,并和交易开拓者、同花顺等计算的值进行了比对,最大程度 上保证指标算法的准确性。虽然已近极力避免错误,但是还是可能出现一些这样那样的错误,所以 请批判性使用这些函数 4)如果对这些函数有疑问(比如有些指标可能会有不同的处理方法),请参见函数中的参考文献部分 5)如果您的策略用到了这些函数,请一定研究这些函数的编写过程,避免未来函数、偷价漏价对你造成的干扰。(20 using matlab few common technical indicators, to facilitate the development of strategies when called directly. 1) preparation of these functions are not technology live, is completely manual labor 2 thoughts) reason to write these functions, one is required for their own research, and secondly to be able to comprehend the process of writing their own inherent in the formula 3) Almost all of the functions that I have tested with the data, and the Trail Blazers and trading, such as flush with the calculated values were compared right, the greatest degree of     On indicators to ensure the accuracy of the algorithm. Although almost try to avoid mistakes, but still may be some kind or another error,     Please use these critical functions 4) If you have questions about these functions (for example, some indicators may have different processing methods), see the References section function 5) If your policy to use these functions, be sure to study the process of)
    2021-04-25 10:08:46下载
    积分:1
  • UKF_EKF_CS
    该程序实现两种具有代表性的EKF与UKF方法在目标跟踪中的性能对比,具体通过MSE实现跟踪效果。(The program implements two methods EKF and UKF representative performance comparison in target tracking, specifically by MSE achieve tracking.)
    2015-01-25 18:24:06下载
    积分:1
  • genhurst
    计算赫斯特指数Calculates the generalized Hurst exponent H(q) of a stochastic variable x(t) (a time series) the scaling of the renormalized q-moments of the distribution <|x(t+r)-x(t)|^q>/<x(t)^q> ~ r^[qH(q)] The value of H(q) give indication about the fractal nature of the signal. H(q) = 0.5 corresponds to a Brownian motion, deviations form 0.5 and dependency on q are indications of multi-fractality and time-correlations.(Calculates the generalized Hurst exponent H(q) of a stochastic variable x(t) (a time series) the scaling of the renormalized q-moments of the distribution <|x(t+r)-x(t)|^q>/<x(t)^q> ~ r^[qH(q)] The value of H(q) give indication about the fractal nature of the signal. H(q) = 0.5 corresponds to a Brownian motion, deviations form 0.5 and dependency on q are indications of multi-fractality and time-correlations.)
    2015-03-09 01:26:14下载
    积分:1
  • 696516资源总数
  • 106432会员总数
  • 11今日下载