登录
首页 » matlab » pts

pts

于 2010-05-28 发布 文件大小:667KB
0 204
下载积分: 1 下载次数: 66

代码说明:

  选择映射降低OFDM系统中PAPR的论文(Select map PAPR reduction in OFDM systems papers)

文件列表:

改进PTS算法降低OFDM峰均功率比的研究.pdf,741499,2010-05-28

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • wsn
    一种传感器网络的节点部署算法的伪代码 初学者,只供参考(WSN)
    2010-05-05 13:16:59下载
    积分:1
  • alamouti-QPSK
    THis is the QPSK code for MIMO channel. This will give you BER performace
    2013-04-10 02:07:40下载
    积分:1
  • cghrec
    说明:  利用MATLAB写的该程序可以计算全息图的制作与再现(Written in MATLAB to use the program can calculate the hologram production and reproduction)
    2009-07-28 00:46:24下载
    积分:1
  • MATLAB_code
    说明:  MATLAB宝典一书中的所有源代码!很好,每个都可以通过matlab调试!!(MATLAB book Collection all source code! Well, each of which can matlab debugging! !)
    2010-05-02 21:06:14下载
    积分:1
  • femaleOrMale
    This script/program, decide about type of voice in input wav file (female or male)
    2013-09-21 01:01:58下载
    积分:1
  • matlab_rs232
    matlab下利用s-function实现rs232编码、解码及通讯的实例程序。需要在matlab下利用mex编译使用(参见s-function用法)(matlab using s-function to achieve rs232 encoding, decoding and communication procedures of the examples. Need to use matlab using mex compiler (see the use of s-function))
    2009-06-13 23:14:43下载
    积分:1
  • kmeans_JIT
    使用了JIT的高效的k均值算法,因为使用了JIT加速,所以在统计工具箱下,比一般的k均值要快许多(Efficient K-Means using JIT (Matlab code) This code uses the JIT acceleration in Matlab, so it is much faster than k-means in the Statistics Toolbox. It is very simple and easy to read. )
    2010-12-31 20:22:33下载
    积分:1
  • LTE_channel_matrix
    LTE-Advance信道预编码矩阵构造的matalb仿真程序,具有很好的使用价值。(LTE-Advance-channel pre-coding matrix simulation program constructed matalb has good value in use.)
    2011-05-05 20:44:35下载
    积分:1
  • ppt
    同步电机的原理的ppt 很详细的阐释了同步电机的原理图文并茂(Synchronous motor ppt principles explained in great detail the principles of synchronous motor with the aid of diagrams)
    2009-03-13 21:27:38下载
    积分:1
  • HDFaceRecognitionSystemMatlabsourcecode
    Advances in data collection and storage capabilities during the past decades have led to an information overload in most sciences. Researchers working in domains as diverse as engineering, astronomy, biology, remote sensing, economics, and consumer transactions, face larger and larger observations and simulations on a daily basis. Such datasets, in contrast with smaller, more traditional datasets that have been studied extensively in the past, present new challenges in data analysis. Traditional statistical methods break down partly because of the increase in the number of observations, but mostly because of the increase in the number of variables associated with each observation. The dimension of the data is the number of variables that are measured on each observation.
    2009-07-11 13:58:55下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载