-
最大相位系统和最小相位系统的模拟
说明: 这个程序模拟了最大相位系统和最小相位系统,并分析其频谱(the simulation phase of the largest systems and minimum phase systems, and analyzing its spectrum)
- 2021-01-12 11:08:50下载
- 积分:1
-
PCA-SIFT
说明: PCA-SIFT算法的实现,PCA-SIFT是对SIFT算法的改进,用PCA替代SIFT算法中的第四步,提高了效率,且准确率更高(PCA-SIFT algorithm implementation, PCA-SIFT SIFT algorithm is an improved SIFT algorithm with PCA instead of the fourth step, improve efficiency, and higher accuracy)
- 2011-04-06 14:27:25下载
- 积分:1
-
MFP_based_on_High_order_Statistics-master
浅层海洋环境由信源组成声源,海洋形成信道,和水听器阵列组成接收器。在这个传播模型中,信源,信道和接收信号这三者,通常能知二求一,具体应用诸如利用海洋环境参数和接收到的信号来定位声源,或者通过计算发射信号和接收信号之间的差异,反演海洋环境参数。
而在接收器方面,我们通过设置各向同性的水听器阵列。通过算法和处理器,我们便能量化模型,传统是处理器主要基于接收信号是高斯信号,而海洋中存在着大量的有色噪声。本课题的研究目的便是在前人的基础上,在海洋声层析成像的背景下,在信源与接收器阵列之间,引入信号的高阶统计量,对非高斯过程的水下信号源进行定位,并提高算法的性能和准确性。
利用非高斯过程的高阶累积量不恒为零的特点,滤去高斯有色噪声对信号的影响,其又包含了信号的相位信息,便可以极大的优化匹配场处理过程的性能和准确性。(After receiving signals based on high order cumulant matched field processor after matched field localization, the positioning effect will be more accurate, sidelobe suppression more effectively, and compared with other traditional matched field processor in low SNR environment, it can position more accurately.)
- 2020-10-28 12:29:58下载
- 积分:1
-
kalman_filter
kalman filter design for windowing radar target detection
- 2012-01-27 18:37:03下载
- 积分:1
-
04
应用matlab实现对统计分析中的主成分分析方法,高效实现对输入变量的降低维数,同时(Application matlab realize the principal component analysis statistical analysis, efficient implementation of reduced dimensionality of the input variables, while)
- 2014-01-07 15:31:58下载
- 积分:1
-
timing
sc-fde(单载波频域均衡)系统的定时功能仿真(sc-fde (single carrier frequency domain equalization) system timing functional simulation)
- 2010-08-04 20:53:30下载
- 积分:1
-
ProjectionOnConvexSets
重建高分辨率图像使用在凸集投影,高效率matlab程式码(reconstruct high resolution image using Projection On Convex Sets)
- 2010-09-07 12:56:49下载
- 积分:1
-
BIDIRECTIONAL_SMOOTHNESS_MUSIC
MUSIC算法[1]是一种基于矩阵特征空间分解的方法。从几何角度讲,信号处理的观测空间可以分解为信号子空间和噪声子空间,显然这两个空间是正交的。信号子空间由阵列接收到的数据协方差矩阵中与信号对应的特征向量组成,噪声子空间则由协方差矩阵中所有最小特征值(噪声方差)对应的特征向量组成。(MUSIC algorithm [1] is a feature space based on matrix decomposition method. From the geometric point of view, the signal processing can be decomposed observation space the signal subspace and the noise subspace, it is clear that the two spaces are orthogonal. Signal Subspace data received by the array covariance matrix and eigenvectors corresponding to the signal component, the noise subspace from the covariance matrix of all the smallest eigenvalue (noise variance) eigenvector components.)
- 2013-09-15 20:23:33下载
- 积分:1
-
chapter13
matlab30个案例算法之一,对学习有很大帮助(the one of matlab30 case algorithm learning)
- 2012-08-29 10:59:57下载
- 积分:1
-
Kalman--with-sliding-average-filter
卡尔曼滤波同滑动平均法滤波的比较 附波形图(Kalman filter with a sliding average filter with waveforms)
- 2021-03-22 12:49:16下载
- 积分:1