登录
首页 » matlab » svm

svm

于 2017-03-15 发布 文件大小:65KB
0 281
下载积分: 1 下载次数: 12

代码说明:

  运用支持向量机对一组超宽带非视距信号识别(Support Vector Machine Signal Identification)

文件列表:

data.mat,65086,2017-03-05
dataprocess.m,740,2017-03-09
svm-nlos.m,2817,2017-03-09

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • arima
    时间序列法,通过过去数据来建立相应模型来预测未来数据(Time series, using past data to establish corresponding models to predict future data)
    2018-03-08 22:01:43下载
    积分:1
  • traversal_consist
    遗传算法优化小波神经网络的源程序 1 构造的非线性函数 位于nninit_test m 2 直接用WNN逼近非线性 Wnn_test()
    2018-03-15 23:48:49下载
    积分:1
  • nirtg
    分而治之方法与软件设计的模块化方法非常相似,为了解决一个大的问题,可以: 1) 把它分成两个或多个更小的问题; 2) 分别(The divide-and-conquer approach is very similar to the modular approach to software design. To solve a big problem, you can: 1) divide it into two or more smaller problems; 2))
    2018-09-04 05:12:14下载
    积分:1
  • 一种信号的处理方法 SES
    说明:  一种信号的处理方法,用于非平稳的信号处理(A signal processing method for nonstationary signal processing)
    2020-07-13 08:18:52下载
    积分:1
  • GAM
    主要利用R语言进行广义加法模型,进行回归预测(This paper mainly uses R language to carry on the generalized additive model, and carries on the regression forecast)
    2017-11-10 15:43:21下载
    积分:1
  • FNN与PCA和KPCA结合
    一种特征提取方法:结合主元分析(PCA)和核主元分析(KPCA)的前馈神经网络(FNN)(A feature extraction method: the feedforward neural network (FNN) combined with principal component analysis (PCA) and kernel principal component analysis (KPCA))
    2020-09-18 10:27:53下载
    积分:1
  • Kmeans-python
    聚类分析31省市的经济情况,以每个聚类簇的平均值来衡量省市经济的发展水平。(Cluster analysis of the economic situation of 31 provinces and municipalities, with the average value of each cluster to measure the level of economic development of provinces and municipalities.)
    2020-07-03 13:40:02下载
    积分:1
  • 算法
    包含很多知名算法实现,支持向量机,决策树,粗糙集,贝叶斯分类器等,适合学术研究,短评论意见挖掘,文本分类等。
    2022-06-03 05:40:28下载
    积分:1
  • debbgger
    三次样条插值的C语言算法,但是总是数据溢出()
    2018-05-27 05:33:39下载
    积分:1
  • EM 算法
    用EM算法求解高斯混合模型并可视化,数据是男女生的身高分布,前提是初始化男女生身高各自的均值和方差和比例,然后由EM算法求解,男女生身高的均值方差,以拟合数据。(The EM algorithm is used to solve the Gauss mixture model and visualize. The data is the height distribution of male and female. The premise is to initialize the mean, variance and proportion of the male and female height, then the mean variance of the height of male and female is solved by the EM algorithm, so as to fit the data.)
    2018-07-14 12:46:57下载
    积分:1
  • 696518资源总数
  • 105714会员总数
  • 27今日下载