登录
首页 » matlab » kasterenDataset

kasterenDataset

于 2021-03-30 发布 文件大小:46KB
0 353
下载积分: 1 下载次数: 6

代码说明:

  主要针对行为识别,常用数据处理方法及分类,可视化 包含数据集(Mainly for behavior recognition, commonly used data processing methods and classification, visualization Contain data sets)

文件列表:

kasterenDataset\@actstruct, 0 , 2008-07-02
kasterenDataset\@actstruct\actstruct.m, 1912 , 2006-08-15
kasterenDataset\@actstruct\display.m, 1156 , 2007-06-19
kasterenDataset\@actstruct\horzcat.m, 127 , 2006-07-26
kasterenDataset\@actstruct\subsasgn.m, 594 , 2006-07-26
kasterenDataset\@actstruct\subsref.m, 2193 , 2007-11-07
kasterenDataset\@actstruct\vertcat.m, 416 , 2007-01-05
kasterenDataset\@sensorstruct, 0 , 2008-07-02
kasterenDataset\@sensorstruct\display.m, 1123 , 2006-08-07
kasterenDataset\@sensorstruct\horzcat.m, 126 , 2006-08-24
kasterenDataset\@sensorstruct\sensorstruct.m, 1907 , 2006-08-24
kasterenDataset\@sensorstruct\subsasgn.m, 1198 , 2006-08-07
kasterenDataset\@sensorstruct\subsref.m, 2203 , 2007-10-09
kasterenDataset\@sensorstruct\vertcat.m, 258 , 2006-07-26
kasterenDataset\convert2ChangeFeatMat.m, 1742 , 2008-05-09
kasterenDataset\convert2LastFiredFeatMat.m, 1874 , 2008-05-09
kasterenDataset\convert2RawFeatMat.m, 1716 , 2008-07-02
kasterenDataset\kasterenActData.txt, 11453 , 2008-07-02
kasterenDataset\kasterenDataset.mat, 52280 , 2008-07-02
kasterenDataset\kasterenSenseData.txt, 63319 , 2008-07-02
kasterenDataset\README.txt, 1957 , 2010-08-10
kasterenDataset\runScript.m, 419 , 2008-07-02
kasterenDataset\sensorGUI, 0 , 2008-07-02
kasterenDataset\sensorGUI\getLabel.m, 332 , 2007-03-08
kasterenDataset\sensorGUI\initplot.m, 1333 , 2008-03-15
kasterenDataset\sensorGUI\lineClickCallback.m, 214 , 2008-03-15
kasterenDataset\sensorGUI\plotas.m, 2418 , 2008-07-02
kasterenDataset\sensorGUI\plotss.m, 2795 , 2008-07-02
kasterenDataset\sensorGUI\sec2Time.m, 342 , 2003-05-20
kasterenDataset\sensorGUI\sensorGUI.m, 2014 , 2008-01-29
kasterenDataset\sensorGUI\sensorGUIHandler.m, 3632 , 2008-03-17
kasterenDataset\sensorGUI\timeTicks.m, 1277 , 2003-05-20
kasterenDataset, 0 , 2008-07-02

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 从零开始学Python网络爬虫源代码+教学PPT
    说明:  《从零开始学爬虫》的配套资料(PPT和源码)("Learning Reptiles from Zero" (PPT and Source))
    2019-03-18 22:06:06下载
    积分:1
  • 朴素贝叶斯分类
    朴素贝叶斯分类的分类器实现,使用的是matlab语言。内含测试集和训练集,可直接运行,readme.txt文件中说明了数据格式
    2022-02-07 02:48:39下载
    积分:1
  • House_price
    主要是对二手房房价的因变量房价和其相关的因变量之间的关系进行简单的描述统计分析(Mainly for the second-hand house price dependent variable housing prices and its related variables of the relationship between the simple description of statistical analysis)
    2017-11-10 15:40:51下载
    积分:1
  • TurbulentWindGenerator
    三维风场模拟.利用Kaimal spectrum结合FFT进行风场模拟,生成风速时程得进行必要参数的定义。(3D Turbulent Wind Generation。 Generation of three-dimensional turbulent wind fields, by employing a Kaimal spectrum and IEC-based coherence function. )
    2017-02-28 11:35:25下载
    积分:1
  • sklearn-tree-BN-knn
    说明:  分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • FDXD-CPML
    FDTD three-dimensional CPML
    2018-09-06 15:38:10下载
    积分:1
  • Archive
    PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • 聚类指标小结
    说明:  聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)
    2020-06-19 05:20:01下载
    积分:1
  • KMeans
    说明:  用matlab 实现了kmeans算法还附有评价指标计算(Matlab to achieve kmeans algorithm also attached to the evaluation index calculation)
    2020-06-19 04:40:01下载
    积分:1
  • GWR4操作说明
    GWR能够实现地理加权回归计算,里面有GWR4操作说明,虽然是英文,但有图片介绍,很容易理解,是GWR模型入门的好工具,适合经济学、数据挖掘等人员使用(GWR can realize geographically weighted regression calculation, including GWR4 operation instructions. Although it is in English, it has pictures to introduce, and is easy to understand. It is a good tool for GWR model entry. It is suitable for personnel such as economics and data mining.)
    2018-03-16 17:17:11下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载