登录
首页 » matlab » 雷达matlab仿真,波束形成,角度测量,跟踪等等

雷达matlab仿真,波束形成,角度测量,跟踪等等

于 2021-02-19 发布
0 340
下载积分: 1 下载次数: 25

代码说明:

说明:  波形设计算法,阵列信号处理等相关知识的介绍仿真等(Introduction and Simulation of waveform design algorithm, array signal processing and other related knowledge)

文件列表:

23\angle_delta.m, 2196 , 2014-05-15
23\angle_k.m, 3591 , 2014-05-19
23\angle_k2.m, 1322 , 2014-04-21
23\data_Position_RMSE_5261942.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261945.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261946.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261953.xls, 108544 , 2014-05-26
23\data_Position_RMSE_526202.xls, 79872 , 1990-05-29
23\data_Position_RMSE_5291628.xls, 57856 , 2014-05-29
23\data_Position_RMSE_529165.xls, 57856 , 2014-05-29
23\data_Position_RMSE_731017.xls, 62976 , 2014-07-03
23\data_Position_RMSE_731714.xls, 62976 , 2014-07-04
23\data_Position_RMSE_741136.xls, 62976 , 2014-07-06
23\data_Position_RMSE_74842.xls, 62976 , 2014-07-04
23\data_SNR_RMSE.xls, 17920 , 2014-05-16
23\data_SNR_RMSE_0519.xls, 17920 , 2014-05-19
23\data_SNR_RMSE_0520.xls, 17920 , 2014-05-20
23\data_SNR_RMSE_0520_a.xls, 17920 , 2014-05-21
23\data_SNR_RMSE_0520_b.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52216.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52616.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261643.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261649.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261652.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261655.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261659.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261713.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261716.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261719.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526172.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261723.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261726.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261729.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261733.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261736.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261739.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261743.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261746.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261749.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261753.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261756.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261759.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526176.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526179.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261813.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261816.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261819.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261823.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526183.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526186.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526189.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5291713.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291717.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291725.xls, 17920 , 2014-05-29
23\dbf_test_1.mat, 451 , 2014-06-16
23\dbf_test_2.mat, 453 , 2014-06-16
23\dbf_test_3.mat, 452 , 2014-06-16
23\Echo_MIMO_PCM.m, 3714 , 2014-04-30
23\echo_pa_hf.m, 7554 , 2014-04-28
23\echo_pcm_static.m, 1786 , 2014-04-21
23\error_alphar2013.m, 5125 , 2014-06-16
23\error_alphat2013.m, 3312 , 2013-06-07
23\error_angle.m, 367 , 2013-06-02
23\error_d.m, 3963 , 2014-06-16
23\error_d2013.m, 6414 , 2014-04-09
23\error_v2013.m, 4177 , 2013-06-08
23\gen_base.m, 2497 , 2014-04-18
23\Gen_st_vector0506.m, 1725 , 2014-04-28
23\Gen_st_vector0524.m, 2123 , 2014-04-28
23\Gen_st_vector_cs.m, 2139 , 2014-05-14
23\hs_err_pid5552.log, 23348 , 1990-05-29
23\main_23.m, 57186 , 2014-06-16
23\main_23_0616.m, 60040 , 2014-07-04
23\matching10.m, 1198 , 2013-06-02
23\matching10_2013.m, 469 , 2014-05-13
23\monoPA.m, 1243 , 2014-05-30
23\monopulse_vec.m, 868 , 2014-05-15
23\multi_par.m, 3395 , 2014-05-30
23\mydata.xls, 17408 , 2014-04-30
23\papc-16-128.mat, 275 , 2013-06-02
23\papc-16-256.mat, 352 , 2013-04-18
23\rdbf.m, 1219 , 2014-06-16
23\rExtract1.m, 594 , 2014-06-16
23\rExtract2.m, 294 , 2013-06-02
23\rExtract20130526.m, 595 , 2013-06-07
23\sigma_thetar.m, 0 , 2014-05-20
23\SNR_RMSE0507.fig, 2702 , 2014-05-07
23\sypc-16-1024.mat, 3583 , 2013-06-02
23\sypc-16-2048.mat, 6959 , 2013-06-02
23\sypc-16-256.mat, 1060 , 2013-06-02
23\Target_Echo_PCM.m, 5266 , 2014-04-21
23\testdata2.xls, 16896 , 2014-04-30
23\transmit_2013.m, 2401 , 2014-05-14
23\t_mtd.m, 707 , 2014-06-16
23, 0 , 2014-07-06

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 文本分类(采用Java语言)
    资源描述利用分类算法实现对文本的数据挖掘,主要包括: 1. 语料库的构建,主要包括利用爬虫收集Web文档等; 2. 语料库的数据预处理,包括文档建模,如去噪,分词,建立数据字典, 使用词袋模型或主题模型表达文档等; 注:使用主题模型,如LDA可以获得实验加分; 3. 选择分类算法(如朴素贝叶斯、SVM等),训练文本分类器,理解所选 的分类算法的建模原理、实现过程和相关参数的含义; 4. 对测试集的文本进行分类 5. 对测试集的分类结果利用正确率和召回率进行分析评价。 
    2022-02-13 04:15:07下载
    积分:1
  • 用python 做的网络爬虫
    说明:  用python 做的网络数据爬虫,爬取淘宝数据,并分析。(Use Python to do the network data crawler, crawl the Taobao data, and analyze.)
    2020-02-25 18:34:31下载
    积分:1
  • FDP聚类算法
    说明:  一种无监督的聚类算法,基于密度聚类,名称为基于快速搜索与寻找密度峰值的聚类(Clustering by fast search and find of desity peaks)
    2020-02-24 15:43:51下载
    积分:1
  • 一种信号的处理方法 SES
    说明:  一种信号的处理方法,用于非平稳的信号处理(A signal processing method for nonstationary signal processing)
    2020-07-13 08:18:52下载
    积分:1
  • python 实现随机森林
    应用背景 数据   :两个月之内 40000个客户的15个数据字段   包含客户的 地          理位置,职业,职级,年收入,。。。。。。    购买过得产品 目的:对新客户进行推荐一个适合该客户的产品, 对老客户推荐可能再购买的产品 数据处理    数据清洗:   describe 每个特征统计分析       方差     -分析缺陷特征和波动性                 空值赋值为  “-1 “              -  保证模型的可使用    数据归一化:eg:邮编 相似度不高 根据一线二线….进行划分  – 特征的重要性 关键技术特征选择    随机森林:  判断特征的重要性 :思考为何重要性高     AHP    :  迭代设置每个特征的权重 模型选择   :根据数据量数量,是否有标签,分类or回归选取 关于模型选择时候我想用协同过滤  但是不知道关于特征的协同过滤是怎么执行的   是每个特征都有一个评分构成评价矩阵么?
    2022-02-25 17:28:51下载
    积分:1
  • guanlianguize
    r语言中关联规则代码实现 运用arulesViz包和arules包中的apriori函数(Code Implementation of Association Rule)
    2019-01-24 15:39:51下载
    积分:1
  • 77257795PCA_yuandaima
    PCA源程序,主元分析源程序,可以用于变量的特征提取(PCA source code, principal component analysis source, can be used for variable feature extraction)
    2017-06-04 21:05:56下载
    积分:1
  • 8641704
    插值抽取的内容,数字变频用, 分享了,请高手完善指教,()
    2018-05-25 06:35:56下载
    积分:1
  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • kaggle叶子分类
    利用一维卷积神经网络将叶子进行分类,里面包含的有数据(Classification of leaves using one dimensional convolution neural network)
    2018-07-12 20:41:43下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载