登录
首页 » Python » python数据分析 韩波

python数据分析 韩波

于 2018-09-08 发布 文件大小:171KB
0 284
下载积分: 1 下载次数: 8

代码说明:

  一本python数据分析的优秀资料 《python数据分析》(python data analysis),作者【印尼】Ivan Idris,翻译:韩波。 本人制作的PDF图书,带目录和书签。 作为一种高级程序设计语言,Python凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。同时,Python语言的数据分析功能也逐渐为大众所认可。, 本书是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组、matplotlib和pandas开始,陆续介绍了数据加工、数据处理和数据可视化等内容。同时,本书还介绍了信号处理、数据库、文本分析、机器学习、互操作性和性能优化等高级主题。在本书的结尾,还采用3个附录的形式为读者补充了一些重要概念、常用函数以及在线资源等重要内容。, 本书示例丰富、简单易懂,非常适合对Python语言感兴趣或者想要使用Python语言进行数据分析的读者参考阅读。(python data analysis)

文件列表:

3358OS_Code, 0 , 2014-10-24
3358OS_Code\3358OS_01_Code, 0 , 2014-10-24
3358OS_Code\3358OS_01_Code\code1, 0 , 2014-10-24
3358OS_Code\3358OS_01_Code\code1\vectorsum.py, 1148 , 2014-05-04
3358OS_Code\3358OS_02_Code, 0 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code, 0 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2, 0 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\arrayattributes.py, 587 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\arrayattributes2.py, 2016 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\arrayconversion.py, 1264 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\boolean_indexing.py, 545 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\broadcasting.py, 731 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\charcodes.py, 399 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\copy_view.py, 386 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\dtypeattributes.py, 344 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\dtypeattributes2.py, 340 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\dtypeconstructors.py, 488 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\elementselection.py, 396 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\fancy.py, 503 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\ix.py, 479 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\numericaltypes.py, 772 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\shapemanipulation.py, 1350 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\slicing1d.py, 599 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\splitting.py, 1707 , 2014-10-24
3358OS_Code\3358OS_02_Code\3358OS_02_Code\code2\stacking.py, 2817 , 2014-10-24
3358OS_Code\3358OS_03_Code, 0 , 2014-10-24
3358OS_Code\3358OS_03_Code\3358OS_03_Code, 0 , 2014-10-24
3358OS_Code\3358OS_03_Code\3358OS_03_Code\basic_stats.py, 517 , 2014-05-10
3358OS_Code\3358OS_03_Code\3358OS_03_Code\eigenvalues.py, 384 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\goog_flutrends.csv, 7549 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\headortail.py, 441 , 2014-09-09
3358OS_Code\3358OS_03_Code\3358OS_03_Code\inversion.py, 201 , 2014-09-09
3358OS_Code\3358OS_03_Code\3358OS_03_Code\masked.py, 589 , 2014-10-15
3358OS_Code\3358OS_03_Code\3358OS_03_Code\masked_funcs.py, 778 , 2014-09-09
3358OS_Code\3358OS_03_Code\3358OS_03_Code\mdrtb_2012.csv, 3337 , 2014-05-10
3358OS_Code\3358OS_03_Code\3358OS_03_Code\MLB2008.csv, 7136 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\normaldist.py, 304 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\normality_test.py, 806 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\pkg_check.py, 839 , 2014-05-11
3358OS_Code\3358OS_03_Code\3358OS_03_Code\solution.py, 190 , 2014-05-11
3358OS_Code\3358OS_04_Code, 0 , 2014-10-24
3358OS_Code\3358OS_04_Code\code4, 0 , 2014-10-24
3358OS_Code\3358OS_04_Code\code4\data_aggregation.py, 843 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\date_handling.py, 757 , 2014-05-30
3358OS_Code\3358OS_04_Code\code4\dest.csv, 47 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\df_demo.py, 261 , 2014-05-18
3358OS_Code\3358OS_04_Code\code4\join_demo.py, 913 , 2014-05-20
3358OS_Code\3358OS_04_Code\code4\missing_values.py, 498 , 2014-05-21
3358OS_Code\3358OS_04_Code\code4\pivot_demo.py, 493 , 2014-06-11
3358OS_Code\3358OS_04_Code\code4\pkg_check.py, 664 , 2014-06-10
3358OS_Code\3358OS_04_Code\code4\price_straddle.py, 677 , 2014-06-10
3358OS_Code\3358OS_04_Code\code4\query_demo.py, 704 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\series_demo.py, 621 , 2014-05-18
3358OS_Code\3358OS_04_Code\code4\stats_demo.py, 553 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\tips.csv, 28 , 2014-05-19
3358OS_Code\3358OS_04_Code\code4\WHO_first9cols.csv, 7776 , 2014-05-18
3358OS_Code\3358OS_05_Code, 0 , 2014-10-24
3358OS_Code\3358OS_05_Code\code5, 0 , 2014-10-24
3358OS_Code\3358OS_05_Code\code5\binary_formats.py, 563 , 2014-05-31
3358OS_Code\3358OS_05_Code\code5\hf5storage.py, 491 , 2014-06-01
3358OS_Code\3358OS_05_Code\code5\json_demo.py, 381 , 2014-06-02
3358OS_Code\3358OS_05_Code\code5\loremIpsum.html, 3623 , 2014-06-07
3358OS_Code\3358OS_05_Code\code5\pd_hdf.py, 597 , 2014-06-01
3358OS_Code\3358OS_05_Code\code5\pd_json.py, 410 , 2014-06-03
3358OS_Code\3358OS_05_Code\code5\pd_xls.py, 320 , 2014-06-01
3358OS_Code\3358OS_05_Code\code5\rss.py, 239 , 2014-06-03
3358OS_Code\3358OS_05_Code\code5\soup_request.py, 1056 , 2014-06-07
3358OS_Code\3358OS_05_Code\code5\writing_csv.py, 277 , 2014-05-31
3358OS_Code\3358OS_06_Code, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\code6, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\code6\autocorr_plot.py, 450 , 2014-06-16
3358OS_Code\3358OS_06_Code\code6\basic_plot.py, 137 , 2014-06-14
3358OS_Code\3358OS_06_Code\code6\gpu_transcount.csv, 483 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\lag_plot.py, 426 , 2014-06-16
3358OS_Code\3358OS_06_Code\code6\legend_annotations.py, 1097 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\log_plots.py, 373 , 2014-06-14
3358OS_Code\3358OS_06_Code\code6\pd_plotting.py, 478 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\pkg_check.py, 679 , 2014-06-14
3358OS_Code\3358OS_06_Code\code6\plot_ly.py, 714 , 2014-06-16
3358OS_Code\3358OS_06_Code\code6\scatter_plot.py, 579 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\three_dimensional.py, 735 , 2014-06-15
3358OS_Code\3358OS_06_Code\code6\transcount.csv, 1123 , 2014-06-14
3358OS_Code\3358OS_06_Code\__MACOSX, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\__MACOSX\code6, 0 , 2014-10-24
3358OS_Code\3358OS_06_Code\__MACOSX\code6\._gpu_transcount.csv, 120 , 2014-06-15
3358OS_Code\3358OS_06_Code\__MACOSX\code6\._transcount.csv, 120 , 2014-06-14
3358OS_Code\3358OS_07_Code, 0 , 2014-10-24
3358OS_Code\3358OS_07_Code\code7, 0 , 2014-10-24
3358OS_Code\3358OS_07_Code\code7\ar.py, 1350 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\arma.py, 506 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\autocorrelation.py, 540 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\cointegration.py, 695 , 2014-07-04
3358OS_Code\3358OS_07_Code\code7\filtering.py, 609 , 2014-07-06
3358OS_Code\3358OS_07_Code\code7\fourier.py, 898 , 2014-07-06
3358OS_Code\3358OS_07_Code\code7\iterate.dat, 3525 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\moving_average.py, 461 , 2014-07-04
3358OS_Code\3358OS_07_Code\code7\periodic.py, 1479 , 2014-07-05
3358OS_Code\3358OS_07_Code\code7\pkg_check.py, 678 , 2014-07-03
3358OS_Code\3358OS_07_Code\code7\spectrum.py, 547 , 2014-07-06
3358OS_Code\3358OS_07_Code\code7\window_functions.py, 551 , 2014-07-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 海杂波
    说明:  处理ipix官网下载的雷达原始数据,将方位角以及俯仰角进行处理(Processing radar raw data downloaded from IPIX official website)
    2021-04-14 09:38:55下载
    积分:1
  • 用matlab 实现了kmeans算法
    用matlab 实现了kmeans算法还附有评价指标计算(Matlab to achieve kmeans algorithm also attached to the evaluation index calculation)
    2020-06-19 04:40:01下载
    积分:1
  • degreeor
    复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,可得到度分布图(The MATLAB programming code of clustering coefficient of complex network is used to store complex network as matrix, and then matLab programming is used to get the degree distribution graph.)
    2018-05-23 05:28:45下载
    积分:1
  • ELM
    一种神经网络算法:极限学习机(ELM),包括分类和回归,仿真验证无误,适合初学者练习(A data mining algorithm: limit learning machine (ELM), including classification and regression, simulation verification is unmistakable, suitable for beginners to practice)
    2018-03-14 12:45:55下载
    积分:1
  • 频繁项集算法--CFPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,CFPGROWTH算法,JAVA实现,代码中有详细注释
    2023-03-29 10:25:03下载
    积分:1
  • MSA
    说明:  自动生成Excel表格,包括测量系统分析MSA GR&R--均值极差法 ,方差分析,均值极差(Automatic generation of Excel tables, including measurement system analysis MSA GR&R - mean extreme difference method, variance analysis, mean extreme difference)
    2019-06-20 21:24:10下载
    积分:1
  • Binning算法
    说明:  数据挖掘中的binning算法,用于数据预处理(Binning algorithm in data mining for data preprocessing)
    2019-01-07 09:04:15下载
    积分:1
  • GibbsLDA
    用Gibb Sampling 的方法对LDA的参数进行推断(LDA model with Gibbs Sampling for inference)
    2019-01-24 09:28:57下载
    积分:1
  • 分位回归
    说明:  多种方法实现分位数回归,有完整原理解释,直接可用。(Multiple methods for quantile regression)
    2020-03-03 14:37:14下载
    积分:1
  • MF-DFA-master
    多重分形去趋势波动分析法,用于不同时间序列的重分形交叉相关性分析。(Multifractal detrended fluctuation analysis)
    2018-09-06 14:29:01下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载