天线工程手册
林昌禄老师的天线工程手册,很经典的中文版。供大家下载参考文献303)第11章行波天线11.1行波人线的基本原理(305)11.2长线大线与V形天线菱形大线3104螺旋天线l1.5八木大线(324)l1.6表面波线(329)11.7漏波人线342)参与文献第12章宽频带天线12.1宽频带天线的基本概念12.2“宽带振子天线12.3加载天线(3692.4非频变大线(381)12.5宽频带喇叭大线(40212.6超宽频带接收天线(41012.7宽频带匹配技(413)参考文献第13章绒阵和平面阵13.1阵列线基础(4293.2线阵13.3平面阵13.4方向性和信噪比的最佳化13.5方向图综合(452参考文献(462)第14章微带天线463)概述(463)±4.2微带贴片大线466)14.3微带振子天线和微带隙缝天线(494)14.4宽频带、多频段和频率捷变技术(503)14.5微带线形天线与微带线阵5014.6微带面忤天线参考文献第15章喇叭天线(531)15.]通论15.2主模喇叭天线15.3双模喇叭天线547)15.4多模喇叭天线15.5波纹喇叭天线…56215.6组合喇叭人线15.7其他形式的喇58115.8校正喇叭口亩场的相位分布与透镜天线参考文献第16章反射面天线16·1基木方法和基木公式16.2单反射面天线—一抛物前天线16.3双反射亩天线16.4赋形双反射而天线610)6.5对称双镜天线的效分析6l2)6.6单偏置抛物亩人线16.7双偏置钷物面大线l6.8波束扫描反射面人线(628)6.9溅散板馈源天(638)喇叭抛物而天线(6416.1!抛物柱面天线16、12等强度线波束线(645)参若文献第17章相控阵天线6419)17.1相控:阵人线参数计算公式17.2料阵大线轴射方向性和旁瓣的挖制17.3阵元辐射器的选抒174移相器附遨择17.5相控忤馈电网络的设计(672)17.6相控阵天线的带宽678)17.7柑摔阵天线宽带和宽角匹配方法(681)17.8相控阵的暈化误差(684)17.9颛率扫描大线阵参考文献第18章信号处理天线与阵列倍号处理技术(693)(698.2倍号处理天线18.3自适应∵城滤波天线(718)4白适应抗扰大线系统(737)18.5空间谱估计技术(749第19章时域天线19.!时域人线的研究对象及指标(75l)9.2偶极天线(751)l9.3隙缝轴射器(754)19.4偶极子用作接收天线19.5加载天线19.6渐近线喇叭天线(756)19.7频率无关天线川时城人线19.8脉冲阵列天线75919.9时域凵径辋射及时域面大线19.10时域接收天线与发射天线的关系19.11馈电问题参考文献(769)第三篇天线应用第20章圆极化天线770)20.1引0.2圆极化波的特性与参数20.3圆极化器(7730.4电磁振子惻极化线0.5螺旋人线799)0.6隙缝闶极化天线20.7微带极化天线20.8反射器圆极化极化天线2(0.10其他圆极化天线与文献第21章长、中、短波和超短波通信天线21.!长、中波通信天线设计考虑2.2长、中波通信天线的基本形式及方问性1.3T型与T型大线214笼『型大线1.5高Q铁氧休加感人线(833)21.6短波通信天线设(8321.7水平极化与垂直极化知波通信天线1.8笕带短波通信人线21.9超短波通信天线设计(86721、10超短波接力通信大线1.于栘动通信873参考文献第22章卫星通信天线879)2.l卫星通倍天线发展状况(8792.2对称型双反射镜通信地球站天线的设计22.3对称双镜天线的赋形技术(892)224且星通信天线获得低旁瓣的办法22,5对称型双镜卩通信天线旁瓣源的分析与计算(907)2.6馈源的设计与选择22.7多波束星通信地球站天线22.8跟踪体制及选择参考文献939)第23章雷达天线9403.1达大线的般设计要求………23.2笔形泼束天线扇形波束天线23.4赋形波束人线—余割平方天线…(948)精密龈踪达天线一-单脉冲线及馈源设计(951)36H达天线的电扫描精度妓波束控制(96223.7超视进雷达大线23.8合成!径人线974)参考文献第24章测向天线980)24.)测向系统天线设计原则980)4.2测向系统单兀人线4.3测向系统的宽孔径天线(983244多波束测向24.5伏尔与多普勒伏尔地面天线992)塔康人线24.7仪表着陆系统和微波着陆系统天线(997248环境对测向线场性能的影24.9测向大线系统的误差分析与性能评估考文献第25章飞行体上的天线(I0235.1飞行体L的大25.2椭圆桂面和双曲柱上:的天线l025)253椭圆柱体上的天线园锥体上的天线(045)255椭球体上的天线(105025.6飞行体天线的电兼谷(1056)献第26章毫米波天线概述26.2反射面天线与亳米波馈26.3表衣面被与漏波大线264微带天线与其他的印制天线(I099)26.5集成大线(1108)参考文献第四篇相关论题第27章天线罩(1113般设计考虑(l11327.2外形与结构27.3材料选择(1115)274电磁性能设计参考文前第28章天线的雷达散射截面般概念(1143)28.2反射面天线的R(114728.3阵列人线的HCS1162大线RCS的减缩8.5天线H(S的测量参考文献第29章天线测量(119629.1天线测试场的设计与鉴定(1l969.2振幅方向图测量29.3增益测量(12l0294极化测量(l21929.5相位测量(1223)29.6近场测量(1226)29.7阻抗测量298模型天线法(1242)9.9射电源法(2439.10天线的时域测量参考文献第一篇天线基础第1章引1.1天线功能大线在无线电设备中的主裳功能有两个:第个是能量转换功能,第一个是定向镉射(或接收)功能能量转换功能是指导行波与自由空间波之间的转换,发射天线是将馈线引导的电磁波(高频电流)转换为向空问辐射的电磁波传向远方,接收天线是将空闾的磁波转换为馈线引导的电嵫波(高频电流)送给接收机定向作用是指线辐射或接收电磁波有定的方向性,根据无线电系统设备的要求,发射天线可把电磁波能量集中在一定方向轴射出去,接收天线可只接收特定方向传来的电憾波可以看出,发射天线和接收天线之间的关系类似于发电机与电动机之间的关系,前者是在导行波与自由河波之间往返变换,后者圳在机械能和电能之间往返变换,这种相似性表明:收、发天线之间存在着·定的可逆性。第二汽中4易原理的讨论将证明,只要天线中不含有非线件材料(如铁氧体器件),同一副天线用作发射和川作接收时,其基木特性保持不变。此,本于册中讨论的各种类型天线一般都不特别注明它是发射天线或是接收天线(除特殊应川场合外),都按发射天线处埋。1.2天线类型随着无线电技术的飞速发展和无线电设备应用场合的H靥扩展,已出现了适于不同用途种类繁多的天线,在天线工程设计中选择哪种类型大线很人程度上取决于特应川场合系统的电气和机械方面的要求阵列大线对品种繁多的大线进行分类是件十分难的事。若按工作性线、蛋达天线播天线、电视人线等:若按频段又可分为长波天10 K 100k IM IOM IG 10G 100(线、中波天线、短波天线微波线等。但这些分类法都显得笼不太科学因为有的线既可作发射又可作接收,甚至可收发共用;有的大线既叮用丁通信又可用背达;有的大线既适用于短波又适用于超知波甚至微波。很难将它归属于哪一类行业天线手册将从三个人的方面来讨论天线I程问题,即犬线基础、天线设计和天线应用。在大线分类上则按天线辐射方式进行,适当考虑天线结构、作频段和应川等判素。我们将天线分为四组人寸(/x基木类型:线元天线、行波天线、阵列大线和孔径大线。它们适用的频率范围和天线的大致电尺寸如图1-1所示。表1.1中举出图1-1天线分类些常用天线实例及属的天线类别当然,将天线类型简单地划分为这四红基本形式也仅是·种近似,不能说它十分严密的科学性,因为总还能找到一些例外。但这种分类法有利于读者对本于册的阅表1.1天线类型线元天线阵列大孔径天线单极天线侧射阵角铧喇叭偶极天线菱形天端射阵扇形喇叭螺旋天线直线阵员喇叨陈缠人平面阵多模喇叭载体大线对数时期天线圆形阵混合模喇叭微带天线慢曼波天线波纹喇叭加载大线快波大线信号处坪抛物而瘌叭有源天线漏波逗应阵仪锥大线表面波天线多波束阼单反射面天线鞭状夫线长介质棒天线相控阵双反射面天线密度加权阵球形反射面无线极低副瓣阵偏置反射面天线「焦反射面天线切割反射面天线孔径扫描天线透镜天线角形反射面大线背射人线1.3场区划分假设将发射大线置于图1-2所示球坐标系统的原点处,它向周围辐射电磁波,则其周围的电磁波功率密度(或场强)分布般都是距离r及角坐标(6,q)的函数。因此根据离开天线距离天线位置的不同,将天线周围的场区划分为感应场区,辐射近场区和辐射远场区感应场区感应场冈是指很靠近天线的区域。在这个场区里,电磁波的图t-2球坐标中的天线感应场分量远大于辐射场,而占优势的感应场之电场和磁场的时间相位相差90°,坡印亭矢量为纯虛数,因此,不辐射功率,电场能量和磁场能量柑互交替地贮存于天线附近的空间内。图1-3(a)所小电尺寸小的偶极天线,其感应场区的外边界是λ/2x。这里,入是工作波长。无限大孔径大线不存在感应场区,有限大孔径天线,在其中心区域感应场区仍可忽略,只是在孔径边缘附近存在感应场,感应场随离川天线距离的增加而极快衰减,超过感应场区后,就是辐射场占优势的辐射场区了。图1-3(6)所示电人寸大的孔径大线的帮射场区又分为近场区和远场区1.3.2辐射近场区辐射近场区里电磁场的角分布与离开大线的距离有关,即在不同距离处的天线方向图是不同的。这是因为:(a)由天线各辐射元所建立的场之相对相位关系是随距离而变的;(b)这些场的相对振幅也是随距离而改变的。在辐射近场区的内边界处(即感应区的外边界处),天线方向图是-个主瓣和副瓣难分的起伏包感应场区辐射远场区辐射近场区感应b)孔径天线(a)电尺小小偶坂天线图13天线周围的场区络。随饣离开线距离的增加,直到近远场辐射区时天线方向图的主瓣和副瓣才明显形成,但零点电乎和副辦电平均较3.3辐射远场区辐射近场区的外边就是轴射远场区。这个区域里的特点是:(1)场的大小与离开天线的距离成反比;(2场的角分布(即方问图)与离开天线的距离无关;(3)方向图瓣、鲥瓣和零值点已全部形成辐射远场风的起始边界通常规定为2D(1.1式中,R是从观察点到天线的距离,D足天线孔径的最大线尺寸在这个距离上,孔径中心与孔径边缘到观察点的行程差为边缘与中λ/16,相应的相仪差为225°如果在这个距离上对孔经天线的辐程差=k缘与中心射特性进行测量,其结果与在无穷远距离上测得的结果相差甚微程差=λ/4在【程上是完全可以接受的天线通常是用来向远场区传送能量,因此,天线上作者的主要兴趣也在这一区域上。对孔径线尺寸为D,孔径面上相位恒定的大电尺寸天线而言,远场区的大部分能量集中在±λD弧度的角空间内;在靠近天线的地方,能量主要集中在宽度为D的管道内,如图1-4所示。在近场区的起始部分,可认为辐射大体|是平平行波束区标准-3d点行的;在R≥D2/2A的过渡区域内,场以半角为A/D弧度的锥形向外发散,R=D2/2A处的孔径中心与边缘行程差为A;在R≥近场区R=2Da/k场区2D2/A处则是天线的辐射远场区场在近场区域内的细微变化情况是复杂的,它取决于孔径面图1-4孔径人线的辐射上的特定振幅分布,但流过任一近场“管道”截面的功率恒等于总的辐射功率、随着向远场区的接近,功率密度逐渐趋于1/R2规律变化4功率传输若收、发天线相互处于远场区内,相距为R,若已知发射功率为P1,问接收天线接收的功率为多少?这是-个很有实际用途的工程向题无论通信、需达或电视、播,只要是无线信总传输系统都会面临这题,它与天线特性密切相关,因此,下面进行简要讨论设收发天线设置的相对坐标如图1-5所示。发射线输入功率为P,天线效率为,则辐射功率将是P该辐射功率P住接收天线处产生的功率密度为日,q)D).(6,g)4πR
- 2021-05-06下载
- 积分:1
opencv2.4.9源码分析——SIFT
详细介绍SIFT算法,opencv的SIFT源码分析,以及应用实例SIFT算法进行了改进,通过对两个相邻高斯尺度空间的图像相减,得到个DoG(高斯差分,Difference of gaussians)的响应值图像Dx,y,σ)来近似LoGD(x,y, o)=(G(x,y, ko)-G(x,y,o)O1(x,y)=L(x,y, ko)-L(x,y,a(5)其中,k为两个相邻尺度空间倍数的常数。可以证明DoG是对LoG的近似表示,并且用DoG代替LoG并不影响对图像斑点位賀的检测。而且用DoG近似LoG可以实现下列好处:第一是LoG需要使用两个方向的高斯二阶微分卷积核,而DoG直接使用晑斯卷积核,省去了卷积核生成的运算量;第二是DoG保留了个高斯尺度空间的图像,因此在生成某一空间尺度的特征时,可以直接使用公式1(或公式3)产生的尺度空间图像,而无需重新再次生成该尺度的图像:第三是DoG具有与LoG相同的性质,即稳定性好、抗干扰能力强。为了在连续的尺度下检测图像的特征点,需要建立DoG金宇塔,而DoG金宁塔的建立又离不开髙斯金字塔的建立,如下图所小,左侧为高斯金字塔,右侧为DoG金字塔:(nextoctave)Scale(firstoctave)Difference ofaussianGaussian(DOG)图1高斯金字塔和DoG金字塔高斯金字塔共分O组( Octave),每组又分S层( Layer)。组内各层图像的分辨率是相同的,即长和宽相同,但尺度逐渐增加,即越往塔顶图像越模糊。而下·组的图像是由上组图像按照隔点降采样得到的,即图像的长和宽分别减半。高斯金字塔的组数O是由输入图像的分辨牽得到的,因为要进行隔点降采样,所以在执行降釆样生成高斯金字塔时,一直到不能降采样为止,但图像太小又亳无意义,因此具体的公式为:0=| log2 min(x,y)-2」(6)其中,X和Y分别为输入图像的长和宽,L」衣示向下取整。金字塔的层数S为:(7)LoWe建议s为3。需要注意的是,除了公式7中的第一个字母是大写的S外,后面出现的都是小写的s髙斯金字塔的创建是这样的:设输入图像的尺度为0.5,由该图像得到高斯金字塔的第0组的第0层图像,它的尺度为m,我们称m为基准层尺度,再由第0层得到第1层,它的尺度为ko,第2层的尺度为k2o,以此类推。这里的k为:(8)我们以s=3为例,第0组的6(s+3=6)幅图像的尺度分别为:0,ko0,k2∞,k3o0,k∞o,k5o(9)写成更一般的公式为:d=or∈[0,,s+2](10)第0组构建完成后,再构建第1组。第1组的第0层图像是由第0组的倒数第3层图像经过隔点采样得到的。由公式10可以得到,第0组的倒数第3层图像的尺度为k∞o,k的值代入公式8,得到了该层图像的尺度正好为2∞,因此第1组的第0层图像的尺度仍然是2∞。但由于第1组图像是由第0组图像经隔点降采样得到的,因此相对于第1组图像的分辨率来说,第θ层图像的尺度为ω,即尺度为2σ是相对于输入图像的分辨率来说的,而尺度为∞是相对丁该组图像的分辨率来说的。这也就是为什么我们称0为基准层尺度的原因(它是每组图像的基准层尺度)。第1组其他层图像的生成与第0组的相同。因此可以看出,第1组各层图像的尺度相对于该组分辨率来说仍然满足公式10。这样做的好处就是编程的效率会提高,并且也保证∫高斯金字塔尺度空间的连续性。而之所以会出现这样的结果,是因为在参数选择上同吋满足公式7、公式8以及对上·组倒数第3层图像降釆样这三个条件的原因。那么第1组各层图像相对」输入图像来说,它们的尺度为:=2k00r∈[0,,S-2该公式与公式10相比较可以看出,第1组各层图像的尺度比第0组相对应层图像的尺度人了一倍。高斯金字塔的其他组的构建以此类推,不再赘述。下面给出相对于输入图像的各层图像的尺度公式:o,)=2k∞O∈[0,O-1l,r∈[0,,+2(12)其中,O表示组的坐标,r表示层的坐标,a为基准层尺度。k用公式8代入,得:2O∈[0,…0-1],r∈[0,…,s+2](13)在高斯金字塔中,第0组第∂层的图像是输入图像经髙斯模糊后的结果,模糊后的图像的高频部分必然会减少,因比为了最大程度的保留原图的信息量,LoWe建议在创建尺度空间前首先对输入图像的长宽扩展一倍,这样就形成了高斯金字塔的第-1组。设输入图像的尺度为0.5,那么相对于输入图像,分辨率护人一倍后的尺度应为1,由该图像依次进行高斯平滑处理得到第-1组的各个层的尺度图像,方法与其他组的一样。由于增加」第-1组,因此公式13重新写为(0∈[-1,0,…,0-1],r∈[0,…,s+2](14)DoG金字塔是由高斯金字塔得到的,即高斯金宁塔组内相邻两层图像相减得到DoG金字塔。如髙斯金字塔的第0组的筼0层和第1层相减得到DoG金字塔的第0组的箅0层图像,高斯金字塔的第0组的第1层和第2层相减得到υσG金字塔的第θ组的第1层图像以此类推。需要注意的是,高斯金字塔的组内相邻两层相减,而两组间的各层是不能相减的因此高斯金字塔每组有s+3层图像,而DoG金宁塔每组则有s+2层图像。极值点的搜索是在DoG金字塔内进行的,这些极值点就是候选的特征点。在搜索之前,我们需要在DoG金字塔内剔除那些像素值过小的点,因为这些像素具有较低的对比度,它们肯定不是稳定的特征点。极值点的搜索不仅需要在它所在尺度空间图像的邻域内进行,还需要在它的相邻尺度空间图像内进行,如图2所示。每个像素在它的尺度图像中一共有8个相邻点,而在它的下一个相邻尺度图像和上个相邻尺度图像还各有9个相鸰点(图2中绿色标注的像素),也就是说,该点是在3×3×3的立方体内被包围着,因此该点在DoG金字塔内一共有26个相邻点需要比较,来判断其是否为极大值或极小值。这里所说的相邻尺度图像指的是在同个组内,因此在DoG金字塔内,每一个组的第0层和最后一层各只有一个相邻尺度图像,所以在搜索极值点时无需在这两层尺度图像内进行,从而使极值点的搜索就只在每组的中间s层尺度图像内进行。搜索的过程是这样的:从每组的第1层开始,以第1层为当前层,对第1层的DoG图像中的每个点取·个3×3×3的立方体,立方体上下层分别为第0层和第2层。这样,搜索得到的极值点既有位置坐标(该点所在图像的空间坐标),又有尺度空间坐标(该点所在层的尺度)。当第1层搜索完成后,再以第2层为当前层,其过程与第1层的搜索类似,以此类推。Scale图2DoG中极值点的搜索2、特征点的定位通过上一步,我们得到了极值点,但这些极值点还仅仅是候选的特征点,因为它们还存在一些不确定的因素。首先是极值点的搜索是在离散空间内进行的,并且这些离散空间还是经过不断的降采样得到的。如果把采样点拟合成由面后我们会发现,原先的极值点并不是真正的极值点,也就是离散空间的极值点并不是连续空间的极值点。在这里,我们是需要精确定位特征点的位置和尺度的,也就是要达到亚像素精度,因此必须进行拟合处。我们使用泰勒级数展开式作为拟合函数。如上所述,极值点是·个三维矢量,即它包括极值点所在的尺度,以及它的尺度图像坐标,即=(x,y,o),因此我们需要三维函数的泰勒级数展开式,设我们在=(x0,y,)处进行泰勒级数展开,则它的矩阵形式为:602f02f02fdxax day dao02f02f02faxdy ayay ayaallly-yol2f02f02fOrdo aydo dodo(15)公式15为舍去高阶项的形式,而它的矢量表示形式为f(X)=f(X0)+o¥(X-x0)+7(x-x0)a F(X-Xo(16)在这里表示离散空间卜的插值中心(在离散空问内也就是采样点)坐标,表示拟合后连续空间下的插值点坐标,设ⅹ=Ⅹ-Xn,则X表示相对于插值中心,插值后的偏移量。因此公式16绎过变量变换后,又可写成:f(x)=f(X0)+yX+XTⅩX20X2(17)对上式求导,得af (x a02f0ox ox+2 ax2+axa80f.02fXaxaX2(18)让公式17的导数为0,即公式18为0,就可得到极值点下的相对于插值中心的偏移量:aX2 ax(19)把公式19得到的极值点带入公式17中,就得到了该极值点下的极值Tf(X)=f(X0)+af02f10f)a2f/02f-1of2 8X2 0X/0X28X2dXf(X0)+H打×1ora2Ta2f-ra2fa2f-1 af2 dx dx2dx2dx2 dXa f02f-10f∫(X0)+dF×f7a22 ax ax2 axaflf(Xo)+xx+2 0X(-X)18Ff(X0)+2 aX(20)对于公式19所求得的偏移量如果大」0.5(只要x、y和σ任意一个量大于0.5),则表明插值点已偏移到了它的临近的插值中心,所以必须改变当前的位置,使其为它所偏移到的插值中心处,然后在新的位置上重新进行泰勒级数插值拟合,直到偏移量小于0.5为止(x、y和σ都小于0.5),这是一个迭代的工程。当然,为了避免无限次的迭代,我们还需要设置个最人迭代次数,在达到了迭代次数但仍然没有满足偏移量小于0.5的情况下,该极值点就要被剔除掉。另外,如果由公式20所得到的极值f(X过小,即f(X1,则Tr(H)2(a+β)2(+β)2(y+1)2Det(h)2(25)上式的结果只与两个特征值的比例有关,而与具体的特征值无关。我们知道,当某个像系的矩阵的两个特征值相差越大,即γ很大,则该像素越有可能是边缘。对于公式25,当两个特征值相等时,等式的值最小,随着γ的增加,等式的值也增加。所以,要想检查主曲率的比值是否小于某一阈值y,只要检査下式是否成立即可:Tr(H)(y+1)Det(h)(26)对于不满足上式的极值点就不是特征点,因此应该把它们剔除掉。Lowe给出γ为10在上面的运算中,需要用到有限差分法求偏导,在这里我们给出具体的公式。为方便起见我们以图像为例只给出二元函数的实例。与二元函数类似,三元函数的偏导可以很容易的得到设f(i,是ν轴为i、x轴为j的图像像素值,则在(j点处的一阶、二阶及二阶混合偏导af f(i, j+1)-f(i, j0ff(i+1,j)-f(-1,ax2h2h(27)ff(+1)+f(-1)-2f(,j)a2ff(+1,j+f(-1,j)-2f(i,j)hh(28)2ff(-1,j-1)+f(i+1,j+1)-f(i-1,+1)-f(i+1,-1)dx d(29)由丁在图像中,相邻像素之问的间隔都是1,所以这里的h3、方向角度的确定经过上面两个步骤,一幅图像的特征点就可以完全找到,而且这些特征点是具有尺度不变性。但为了实现旋转不变性,还需要为特征点分配一个方向角度,也就是需要根据检测到的特征点所在的高斯尺度图像的局部结构求得一个方向基准。该高斯尺度图像的尺度a是已知的,并且该尺度是相对于高斯金字塔所在组的基准层的尺度,也就是公式10所表示的尺度。而所谓局部结构指的是在高斯尺度图像中以特征点为中心,以r为半径的区域内计算所有像素梯度的幅角和幅值,半径r为(30)其中a就是上面提到的相对于所在组的基准层的高斯尺度图像的尺度。像素梯度的幅值和幅角的计算公式为:m(xy)=√(x+1,y)-L(x-1,y)2+(L(x,y+1),L(x,y-1)2(31)L(x,y+1)-L(x,y-1)o(x, y)=arctanL(x+1,y)-L(x-1,y)(32)因为在以〃为半径的区域内的像素梯度幅值对圆心处的特征点的贡献是不同的,因此还需要对幅值进行加权处理,这里采用的是高斯加权,该高斯函数的方差Cm为:Om=1.50(33)其中,公式中的σ也就是公式30中的σ在完成特征点邻域范围内的梯度计算后,还要应用梯度方向直方图来统计邻域內内像素的梯度方向所对应的幅值大小。具体的做法是,把360°分为36个柱,则每10°为一个柱,即0°~9为第1柱,10°~19为第2柱,以此类推。在以r为半径的区域内,把那些梯度方向在0~9°范围内的像索找出来,把它们的加权后的梯度嘔值相加在一起,作为第1柱的柱高;求第2柱以及其他柱的高度的方法相同,不再赘述。为了防止某个梯度方向角度因受到噪声的干扰而突变,我们还需要对梯度方向直方图进行平滑处理。 Opencv2.4.9所使用的平滑公式为:H()~h(-2)+h(+2)4×(h(-1)+h(+1)),6×h()i=0...15161616(34)其中h和H分别表示平滑前和平滑后的直方图。由于角度是循环的,即0°=360°,如果出现h(),j超出了(0,…,15)的范围,那么可以通过圆周循环的方法找到它所对应的、在0°~360°之间的值,如h(-1)-h(15)这样,直方图的主峰值,即最高的那个柱体所代表的方向就是该特征点处邻域范围内图像棁度的主方向,也就是该特征点的上方向。由于柱体所代表的角度只是一个范围,如第1柱的角度为0~9°,因此还需要对离散的梯度方向直方图进行插值拟合处理,以得到更精确的方向角度值。例如我们凵经得到了第i柱所代表的方向为特征点的主方向,则拟合公式为:H(i-1)-H(i+1)B=i+=0,…152×(H(-1)+H(i+1)-2×H()(35)O=360-10xB(36)其中,H为由公式34得到的直方图,角度6的单位是度。同样的,公式35和公式36也存在着公式34所遇到的角度问题,处理的方法同样还是利用角度的圆周循环。每个特征点除了必须分配一个主方向外,还可能有一个或更多个辅方冋同,增加辅方向的目的是为了增强图像匹配的鲁棒性。辅方向的定义是,当存在另个柱体高度大于主方向柱体高度的80%时,则该柱体所代表的方向角度就是该特征点的辅方向。在第2步中,我们实现∫用两个信息量来表小一个特征点,即位置和尺度。那么经过上面的计算,我们对特征点的表示形式又增加了个信息量一一方向,即(x,y,o,6)。如果某个特征点还有一个辅方向,则这个特征点就要用两个值来表示——(x,y,,B1)和(x,y,,02),其中O1表示主方向,O2表示辅方向,而其他的变量x,y,不变。4、特征点描述符生成
- 2020-06-25下载
- 积分:1