张贤达的《高阶统计量信号处理方法》
高阶统计量分析方法是一种重要的非高斯信号分析方法,在此上传张贤达的这本书,希望对大家的学习有所帮助专题内容概述高阶统计量的定义、性质和估计155()高阶矩、高阶累积量及其谱·*·····“········““··“·(二)高阶累积量与高阶谱的性质三)高阶累积量与高阶谱的估计…......19、非最小相位系统的辨识21(一)基本问题21(二)MA系统的辨识.25(三)ARMA系统的辨识…135四、谐波恢复42()基本问题42()谐波恢复的高阶累积量方法……………·………43五、空间窄带信号源的波达方向估计()基本问题46(二)基于二阶统计量的DOA估计方法及其不足.147(三)基于高阶统计量的DOA估计方法53、概述高阶统计量( (Higher-order Statistics)是指比二阶统计量更高阶的随机变量或随机过程的统计量。二阶统计量有:〉随机变量(矢量):方差、协方差(相关矩)、二阶矩。随机过程:自相关函数、功率谱、互相关函数、互功率谱、自协方差函数等高阶统计量有:随机变量(矢量):高阶矩( Higher-order Moment),高阶累积量(Higher-order Cumulant)随机过程:高阶矩、高阶累积量、高阶谱( Higher- order Spectra,Polyspectra)。从统计学的角度,对正态分布的随机变量(矢量),用一阶和二阶统计量就可以完备地表示其统计特征。如对一个高斯分布的随机矢量,知道了其数学期望和协方差矩阵,就可以知道它的联合概率密度函数。对一个高斯随机过程,知道了均值和自相关函数(或自协方差函数),就可以知道它的概率结构,即知道它的整个统计特征。但是,对不服从髙斯分布的随机变量(矢量)或随机过程,一阶和二阶统计量不能完备地表示其统计特征。或者说,信息没有全部包含在一二阶统计量中,更高阶的统计量中也包含了大量有用的信息。高阶统计量信号处理方法,就是从非高斯信号的高阶统计量中提取信号的有用信息,特别是从一、二阶统计量中无法提取的信息的方法。从这个角度来说,高阶统计量方法不仅是对基于相关函数或功率谱的随机信号处理方法的重要补充,而且可以为二阶统计量方法无法解决的许多信号处理问题提供手段。可以亳不夸张地说,凡是使用功率谱或相关函数进行过分析与处理,而又未得到满意结果的任何问题,都值得重新试用高阶统计量方法。高阶统计量的概念于1889年提出。高阶统计量的研究始于六十年代初,主要是数学家和统计学家们在做基础理论的研究,以及针对光学、流体动力学、地球物理、信号处理等领域特定问题的应用研究。直到八十年代中、后期,在信号处理和系统理论领域才掀起了高阶统计量方法的研究热潮。标志性的事件有:1. K. S. Lii. m. rosenblatt "Deconvolution and Estimation of TransferFunction phase and Coefficients for non-Gaussian Linear processes AnnStatistcs, Vol, 10, pp. 1195-1208, 1982首次用高阶统计量解决了非最小相位系统的盲辩识问题。2.C.L. Nikias,M.R. Raghuveer的综述文章“ Bispectrum Estimation:ADigital Signal Processing Framework”在Proc.正EE发表,1987July3.1989、1991、1993、1995、1997、1999年举办了六届关于高阶统计量的信号处理专题研讨会(海军研究办公室,NSF, IEEE Control SystemSociety, IEEE ASSP Society, IEEE Geoscience and Remote sensingSociety4. IEEE Trans.onAC1990年1月专辑5. IEEE Trans, on AssP1990年7月专辑。6.J.M. Mendel的综述文章 Tutorial on Higher- Order statistics( Spectra)inSignal Processing and System Theory: Theoretical Results and SomeApplications”.Proc,正E,1991(主要是关于非最小相位系统辨识)。7.C.L. Nikias&A.P. Petropula的专著 Higher-order Spectral Analysis:ANonlinear Processing Framework,由 Prentice-Hall I1993出版。8. Signal Processing,19944月专辑。9. Circuits, Systems, and Signal Processing,1994.6月专辑。高阶统计量方法已在雷达、声纳、通信、海洋学、电磁学、等离子体物理、结晶学、地球物理、生物医学、故障诊断、振动分析、流体动力学等领域的信号处理问题中获得应用。典型的信号处理应用包括系统辨识与时间序列分析建模、自适应估计与滤波、信号重构、信号检测、谐波恢复、图像处理、阵列信号处理、盲反卷积与盲均衡等。在信号处理中使用高阶统计量的主要动机可以归纳成四点1、抑制未知功率谱的加性有色噪声的影响。2、辨识非最小相位系统或重构非最小相位信号。自相关函数或功率谱是相盲的,即不包含信号或系统的相位信息。仅当系统或信号是最小相位时,二阶统计量的方法才能获得正确的结果。相反,高阶统计量既包含了幅度信息,又保留了信号的相位信息,因而可以用来解决非最小相位系统的辨识或非最小相位信号的重构问题。3、提取由于高斯性偏离带来的各种信息对于非高斯信号,其高阶统计量中也包含了大量的信息。对模式识别、信号检测、分类等问题,有可能从高阶统计量获得信号的显著分类特征,4、检测和表征信号中的非线性以及辨识非线性系统。如用来解决非线性引起的二次、三次相位耦合问题。参考资料:1、张贤达,《时间序列分析一高阶统计量方法》,清华大学出版社,1996。2、沈凤麟等,《生物医学随机信号处理》(第9章),中国科学技术大学出版社,1999。3 J M. Mendel. "Tutorial on Higher-order Statistics(Spectra) in SignalProcessing and Systems Theory: Theoretical Results and SomeApplications. Proc. IEEE, Vol. 79, pp. 278-305, 19914, C. L. Nikias A. P, Petropulu. Higher-order Spectral Analysis: ANonlinear Processing Framework. Prentice-Hall. 19935 C L. Nikias J. M. Mendel.Signal Processing with Higher-orderSpectra. IEEE Signal Processing Magazine, Vol 10, July, pp 10-37, 19936 C. L Nikias M. R Raghuveer." Bispectrum Estimation: A DigitalSignal Processing Firamewoork". Proc. IEEE, Vol. 75, pp. 869-891, 19877 P. A. Delaney d. O. Walsh. " A Bibliography of Higher-Order Spectraand Cumulants". IEEE Signal Processing Magazine, Vol 11 July, pp. 61-7019948、J.A. Cadzow.“ Blind Deconvolution via Cumulant Extrema”.IEEESignal Processing Magazine, Vol 13, No 3, pp 24-42, 1996www.ant,uni-bremen.edu.de/hoshome二、高阶统计量的定义、性质和估计(一)高阶矩、高阶累积量及其谱从随机变量→随机矢量→随机过程)1、随机变量的特征函数与累积量定义:设随机变量x具有概率密度fx),其特征函数定义为(s)=f()edx=Eel其中s为特征函数的参数。(可看作八x)的拉普拉斯变换)特征函数Φ(s)只是参数s的函数。对Φ)求k次导数,可得Φ^(s)=Exe因此(O)=E}=m也就是说)在原点阶导数等孩x阶筹k。因此,Φ(s)也称作矩生成函数(又叫第一特征函数)。矩生成函数可以唯一地、完全地确定一个概率分布。这可由矩生成函数唯一性定理阐明:定理:设F(x)和G(x)是具有相同矩生成函数的分布函数,即:e dF (x)= esdG(x)则F(x)=G(x)由矩生成函数可以定义随机变量κ的累积量生成函数(又叫第二特征函数)及累积量。定义:设随机变量x的矩生成函数为Φ(s),则函数H(s)=nΦ(s)称为x的累积量生成函数,而v()在原点的k阶导数dky(s)ds k0称为x的k阶累积量如果将s)和v展开成 Taylor级数,根据以上定义,就会有①(s)=1+m1S+m2S2+…+,,mkS+…k!(2+4+x12cmk!k1也就是说,x的k阶矩和累积量分别是其矩生成函数和累积量生成函数的Taylor级数展开中s项的系数。2、随机矢量的特征函数与累积量定义:令x=[x,x2,…,x是一随机矢量,且s=s,s2,…,sr,则随机矢量x的矩生成函数定义为Φ(S1SES11+2x2+…+Skxkl52为Ex的累积量生成函数定义为(S1,S2,…,Sk)=lnΦ(s1,x的(vy2…,w)阶矩和累积量分别定义为矩生成函数和累积量生成函数的Iayr级数展开中S1S2…S项的函数,即0Φ(S1,s2;…,s)ExVIS"Y(1521512skas1Os2…ask其中vko对v=V2=…=认=1的特殊情况,记随机矢量x的矩和累积量分别为mom(,,cum(Y1X我们下面将用它们来定义随机过程的高阶矩和累积量。3、随机过程的高阶矩和高阶累积量定义:设{x(n)}为k阶平稳随机过程,则该过程的k阶矩定义为ma(z1,z2,…,k-)=mom{x(n),x(n+),…,x(n+xk-1)}而k阶累积量定义为cs(1,z2,…,k-)=cum{x(m),x(nt+),…,x(n+tk1)}根据这一定义,平稳随机过程的k阶矩和k阶累积量实质上就是取x1=x(n),x2=x(n+a),…,x=x(n+k)之后的随机矢量[(n),x(n+z),…,
- 2020-12-03下载
- 积分:1
计算机组成原理期末复习重点总结
本文档适用于大学生学习。主要归纳了计算机组成原理该科目的知识内容,用于期末复习。其中,部分资料为手写归纳,若出现错误请以课本为主星章对奴斜加迹一子电叶尊加亠究漏收电寻对水第代电陪引机第m大现真电计率五代善适计计尊机下分大型和E型和(高座能计加,起邻机,机。微望机22站图形强入利讨机(克入宣内研为時定方用温计专甲加养钝沉言顶程方一五佛。序南假记一可混言→机机费丸罢概描系力輒他指友)计尊加系览的是指附能够程序所四列计机系属池,可根点1结构与西能筋性计摩個氏是指加何突观对加构阿角属指与现机属性)仔夏计導机塔点)消金据存子鸦内,可挖地址形司3),指加椒推均甲二进劇表京)满由操市吊和她(源体脱粒位)今有備内把序悟該4)以泛摩题为中/↓现以有儒为)分鼻机餐很计而叫大烟章事件伦原Am从定伴:如快菜部伴执行速度所兼得秦瓷性庭加速比受限子试評件在系瓷中所占际重号性系涵能(、执行时同染进前)糸瓶如座比=系铙能品前)机行时间(后驶同(5)洪时时的1)x[(进例计+到评戈故行间前→系能加化代应司(下)可设进比例十的足越兼得而益程序而局部性原理时国和皇司)席章A基孤2|105余52(105)。=(11o|o1)212从般×→取坐0,80≤2原0XX≤为为真为整际应都0十原:L+0原二0,0000000-01原二1,0o0oco0模子益武而临界值边M)m整为补福:了30时82=x.[+0=[XD时[补=A+=从=A:)例:x=10)[2+=管位X=-1101=20=1000000直宦原码装换白科:了有为距模=有愿三8反:正码=嚓真负N反:原除磨号取反,原:-127~121)~8路-18~1补二十病而表示:鹃为x-(1)=真鱼万=真值例:像评单精度示701a.0-1010(·0|=·01089 ol01 t ollI Il- 1o0o olo△傅鸡宜格值制正殺原函0原硝0左病0升B右反A+8]补=1十工+补3号励态A-B]料三[A+TB补书两位3查利断?0=0直播乘该A例求解101x来礼点A0n+ oQ CoM初鱼0000A←A+Ao101鸡。0(00计鸦,。。010AA+10|110右形0010(A←A+Nt0001/0(在形0100:CC764=101160neoe. cetl Iec,10h-Ilool onto K=-T二u100l.例求解11初恒为0永截神0M+,形考A人初,oo管AA-A401nom号在6o011彩·将1001011I44+9101。106o0右移20101019101011右形「。。10100在补位臂号n移,n形卫得点运臂X= XM x2X2MEEX+y=(Xm X2x2ESE十YAXE-TEXx二(XD)x2变(=)x-Y=(Am2XE-TEx/YXA/以人点加腐以而墓原理).对操限操7教4置对D下密差,小硝同大砖看,所强小是事同在移但,每市,可1)教两加对里碳上,以对能行相应)将笼果格吧:如录足都不是规格形龙,则各信果满得点数而乘豫法两午将点极刘来,支形的育为两乘所丽违形,其尾赦为两来数尾数勇个将南相阶商的网丽被徐超两成种国商的尾为减毅勇尾除以乘敬的尾搬检加料队同说是长度相词函两进制烯面对应格不司的比奇偶验吨用奇烛验时,校的设置变候证特报得和成中的的截力都使甲成验要原的限5出=骂:如运算CkC城酸乘除善除以中如派席换武减例M)=1D0.G=101求莫循序兄余校的解0(n3,Mn)=10000/1100600·2=-100060DGU)01000余R)=010·可借那兄余为0ABD·x2+20=10010=(0D Tu)传是T6,W硝正一侵梯位的汉码的位的港取频合2-2m+k4m为倍夏色的都,极验应汉丽C排放在殇亠这十9+98十14+414+1Hu HnH1。?H0DDe Ds C4 D4 D3D C D, CC1=H1二Hbs①H7①日?凸2二A=2份H6田H7Jpo③HC2=H4二HH6出1⑤4=H2=H701.nBC4C2C1Bc4c3c,=0→误0果十进剧→误色置
- 2020-12-01下载
- 积分:1