登录
首页 » Others » MATLAB在卡尔曼滤波器中应用的理论与实践Kalman

MATLAB在卡尔曼滤波器中应用的理论与实践Kalman

于 2020-12-01 发布
0 382
下载积分: 1 下载次数: 3

代码说明:

MATLAB在卡尔曼滤波器中应用的理论与实践KalmanKALMAN FILTERINGTheory and Practice Using MATLABThird editionMOHINDER S GREWALCalifornia State University at FullertonANGUS P. ANDREWSRockwell Science Center (retired)WILEYA JOHN WILEY & SONS, INC. PUBLICATIONCopyright 2008 by John Wiley sons, Inc. All rights reservedPublished by John Wiley sons, InC, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or byany means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permittedunder Section 107 or 108 of the 1976 United States Copyright Act, without either the prior writtenpermission of the Publisher, or authorization through payment of the appropriate per-copy fee to theCopyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA 01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbe addressed to the Permissions Department, John Wiley Sons, Inc, lll River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permissionimit of liability Disclaimer of Warranty: While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability orfitness for a particular purpose. No warranty may be created or extended by sales representatives orwritten sales materials. The advice and strategies contained herein may not be suitable for your situationYou should consult with a professional where appropriate. Neither the publisher nor author shall be liablefor any loss of profit or any other commercial damages, including but not limited to special, incidentalconsequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic format. For more information about wiley products, visit our web site atwww.wiley.comLibrary of Congress Cataloging- in-Publication DataGrewal. Mohinder sKalman filtering: theory and practice using MATLAB/Mohinder S. GrewalAngus p. andrews. 3rd edIncludes bibliographical references and indexISBN978-0-470-17366-4( cloth)1. Kalman filtering. 2. MATLAB. I. Andrews, Angus P. II. TitleQA402.3.G69520086298312—dc22200803733Printed in the United States of america10987654321CONTENTSPrefaceAcknowledgmentsXIIIList of abbreviationsXV1 General Information1.1 On Kalman Filtering1.2 On Optimal Estimation Methods, 51. 3 On the notation Used In This book 231. 4 Summary, 25Problems. 262 Linear Dvnamic Systems2. 1 Chapter focus, 312.2 Dynamic System Models, 362. 3 Continuous Linear Systems and Their Solutions, 402.4 Discrete Linear Systems and Their Solutions, 532.5 Observability of Linear Dynamic System Models, 552.6 Summary, 61Problems. 643 Random Processes and Stochastic Systems3.1 Chapter Focus, 673.2 Probability and random Variables (rvs), 703.3 Statistical Properties of RVS, 78CONTEN3.4 Statistical Properties of Random Processes(RPs),803.5 Linear rp models. 883.6 Shaping Filters and State Augmentation, 953.7 Mean and Covariance propagation, 993.8 Relationships between Model Parameters, 1053.9 Orthogonality principle 1143.10 Summary, 118Problems. 1214 Linear Optimal Filters and Predictors1314.1 Chapter Focus, 1314.2 Kalman Filter. 1334.3 Kalman-Bucy filter, 1444.4 Optimal Linear Predictors, 1464.5 Correlated noise Sources 1474.6 Relationships between Kalman-Bucy and wiener Filters, 1484.7 Quadratic Loss Functions, 1494.8 Matrix Riccati Differential Equation. 1514.9 Matrix Riccati Equation In Discrete Time, 1654.10 Model equations for Transformed State Variables, 1704.11 Application of Kalman Filters, 1724.12 Summary, 177Problems. 1795 Optimal Smoothers5.1 Chapter Focus, 1835.2 Fixed-Interval Smoothing, 1895.3 Fixed-Lag Smoothing, 2005.4 Fixed-Point Smoothing, 2135.5 Summary, 220Problems. 226 Implementation Methods2256. 1 Chapter Focus, 2256.2 Computer Roundoff, 2276.3 Effects of roundoff errors on Kalman filters 2326.4 Factorization Methods for Square-Root Filtering, 2386. 5 Square-Root and UD Filters, 2616.6 Other Implementation Methods, 2756.7 Summary, 288Problems. 2897 Nonlinear Filtering2937.1 Chapter Focus, 2937.2 Quasilinear Filtering, 296CONTENTS7.3 Sampling Methods for Nonlinear Filtering, 3307.4 Summary, 345Problems. 3508 Practical Considerations3558.1 Chapter Focus. 3558.2 Detecting and Correcting Anomalous behavior, 3568.3 Prefiltering and Data Rejection Methods, 3798.4 Stability of Kalman Filters, 3828. 5 Suboptimal and reduced- Order Filters, 3838.6 Schmidt-Kalman Filtering, 3938.7 Memory, Throughput, and wordlength Requirements, 4038.8 Ways to Reduce Computational requirements 4098.9 Error Budgets and Sensitivity Analysis, 4148.10 Optimizing Measurement Selection Policies, 4198.11 Innovations analysis, 4248.12 Summary, 425Problems. 4269 Applications to Navigation4279.1 Chapter focus, 4279.2 Host vehicle dynamics, 4319.3 Inertial Navigation Systems(INS), 4359. 4 Global Navigation Satellite Systems(GNSS), 4659.5 Kalman Filters for GNSS. 4709.6 Loosely Coupled GNSS/INS Integration, 4889.7 Tightly Coupled GNSS /INS Integration, 4919. 8 Summary, 507Problems. 508Appendix A MATLAB Software511A 1 Notice. 511A 2 General System Requirements, 511A 3 CD Directory Structure, 512A 4 MATLAB Software for Chapter 2, 512A. 5 MATLAB Software for Chapter 3, 512A6 MATLAB Software for Chapter 4, 512A. 7 MATLAB Software for Chapter 5, 513A 8 MATLAB Software for Chapter 6, 513A 9 MATLAB Software for Chapter 7, 514A10 MATLAB Software for Chapter 8, 515A 11 MATLAB Software for Chapter 9, 515A 12 Other Sources of software 516CONTENAppendix b A Matrix Refresher519B. 1 Matrix Forms. 519B 2 Matrix Operations, 523B 3 Block matrix Formulas. 527B 4 Functions of Square Matrices, 531B 5 Norms. 538B6 Cholesky decomposition, 541B7 Orthogonal Decompositions of Matrices, 543B 8 Quadratic Forms, 545B 9 Derivatives of matrices. 546Bibliography549Index565PREFACEThis book is designed to provide familiarity with both the theoretical and practicalaspects of Kalman filtering by including real-world problems in practice as illustrativeexamples. The material includes the essential technical background for Kalman filter-ing and the more practical aspects of implementation: how to represent the problem ina mathematical model, analyze the performance of the estimator as a function ofsystem design parameters, implement the mechanization equations in numericallystable algorithms, assess its computational requirements, test the validity of resultsitor the filteThetant attributes ofthe subject that are often overlooked in theoretical treatments but are necessary forapplication of the theory to real-world problemsIn this third edition, we have included important developments in the implemen-tation and application of Kalman filtering over the past several years, including adaptations for nonlinear filtering, more robust smoothing methods, and develelopingapplications in navigationWe have also incorporated many helpful corrections and suggefrom ourreaders, reviewers, colleagues, and students over the past several years for theoverall improvement of the textbookAll software has been provided in MatLab so that users can take advantage ofits excellent graphing capabilities and a programming interface that is very close tothe mathematical equations used for defining Kalman filtering and its applicationsSee Appendix a for more information on MATLAB softwareThe inclusion of the software is practically a matter of necessity because Kalmanfiltering would not be very useful without computers to implement it. It provides aMATLAB is a registered trademark of The Mathworks, IncEFACEbetter learning experience for the student to discover how the Kalman filter works byobserving it in actionThe implementation of Kalman filtering on computers also illuminates some of thepractical considerations of finite-wordlength arithmetic and the need for alternativealgorithms to preserve the accuracy of the results. If the student wishes to applywhat she or he learns, then it is essential that she or he experience its workingsand failings--and learn to recognize the differenceThe book is organized as a text for an introductory course in stochastic processes atthe senior level and as a first-year graduate-level course in Kalman filtering theory andapplicationIt can also be used for self-instruction or for purposes of review by practi-cing engineers and scientists who are not intimately familiar with the subject. Theorganization of the material is illustrated by the following chapter-level dependencygraph, which shows how the subject of each chapter depends upon material in otherchapters. The arrows in the figure indicate the recommended order of study. Boxesabove another box and connected by arrows indicate that the material represented bythe upper boxes is background material for the subject in the lower boxAPPENDIX B: A MATRIX REFRESHERGENERAL INFORMATION2. LINEAR DYNAMIC SYSTEMSRANDOM PROCESSES AND STOCHASTIC SYSTEMS4. OPTIMAL LINEAR FILTERS AND PREDICTORS5. OPTIMAL SMOOTHERS6. IMPLEMENTATIONMETHODS7. NONLINEAR8. PRACTICAL9. APPLICATIONSFILTERINGCONSIDERATIONSTO NAVIGATIONAPPENDIX A: MATLAB SOFTWAREChapter l provides an informal introduction to the general subject matter by wayof its history of development and application. Chapters 2 and 3 and Appendix b coverthe essential background material on linear systems, probability, stochastic processesand modeling. These chapters could be covered in a senior-level course in electricalcomputer, and systems engineeringChapter 4 covers linear optimal filters and predictors, with detailed examples ofapplications. Chapter 5 is a new tutorial-level treatment of optimal smoothing

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 瑕疵检测数据集
    缺陷检测/瑕疵检测数据集。包含瑕疵图片的训练集和验证集。
    2020-11-28下载
    积分:1
  • 图像融合C++/MFC
    图像融合程序源码(含可运行程序),可以实现加权融合(ALPHA)、乘积变换融合、比值融合等常见方法,并能够对融合图像进行各方面的精度评价,如平均梯度、熵与联合熵、偏差指数、相关系数、均值偏差、方差偏差等。适用于数字图像处理、遥感影像处理等。
    2020-11-27下载
    积分:1
  • labview功率计,频谱分析仪等源序文件
    5个labview的程序源文件,包括波形记录仪,功率计,频谱分析仪,双路正弦波发生器,虚拟信号发生仪
    2020-12-01下载
    积分:1
  • Dijkstra算法详细讲解.ppt
    Dijkstra算法,Dijkstra算法详细讲解,Dijkstra算法详细讲解
    2020-12-02下载
    积分:1
  • “中国法研杯”司法人工智能挑战赛
    “中国法研杯”司法人工智能挑战赛
    2020-11-29下载
    积分:1
  • Halcon中线阵相机的操作算子解析
    针对halcon中调用线阵相机进行二次开发中使用到的常见算子进行了详细注释,并通过Halcon自带的一个例程的详细注解演示了使用halcon进行线阵相机二次开发的整个流程。
    2020-12-10下载
    积分:1
  • html旅游网页设计模板下载
    html旅游网页设计模板下载基于html+css设计,大气美观
    2020-12-12下载
    积分:1
  • UDS诊断序,整车网络测试应用序(PCAN-UDS API – User Manual.pdf)
    UDS_PCAN_APIA应用程序,整车网络诊断应用程序,超值!(PEAK CAN UDS Application Programming InterfaceUser Manual.pdf)PCAN-UDS APi- User ManualContents1 PCAN-UDS API Documentation2 Introduction2.1 Understanding PCAN-UDS2.2 Using PCAN-UDS2.3 Features7888992.4 System Requi rements2.5 Scope of supply3 DLL API Reference3.1 Namespaces103.1.1 Peak Can uds3.2 Units3.21 PuDs Unit3.3 Classes3.3.1 UDSApi3.3.2 TUDSApi3. 4 structures1022334553.4.1 TPUDSMsg3.4.2 TPUDSSessionInfo3.43 TPUDSNetAddrinfo3.5 Types213.5.1 TPUDSCANHand]e223.5.2 TPUDSstatus233.5.3 TPUDSBaudrate253.5.4 TPUDSHWType283.5.5 TPUDSResult303.5.6 TPUDSParameter313.5.7 TPUDSService393.5.8 TPUDSAddress423.5.9 TPUDSCanId443.5.10 TPUDSProtoco l463.5.11 TPUDSAddressingType483.5.12 TPUDSMessageType493.5.13 TPUDSSVCParamDSC503.5.14 TPUDSSVCParamER513.5.15 TPUDSSVCParamcc533.5.16 TPUDSSVCParamTP543.5.17 TPUDSSVCParamcdTCS543.5.18 TPUDSSvCParamROE553.5.19 TPUDSSvCParamROERe commendedserviceID573.5.20 TPUDSSVCParamLC583.5.21 TPUDSSvcParamLCBaudrateidentifier593.5.22 TPUDSSVCParamDI603.5.23 TPUDSSVCParamRDBPI643.5.24 TPUDSSVCParamDDDI653,525 TPUDSSyCParamRDTCI66PCAN-UDS APi- User Manual3.5.26 TPUDSSVCParamRDTCI DTCSVM6935.27 TPUDSSYCParamIOCBI703.5.28 TPUDSSvCParamRC3.5.29 TPUDSSVCParaMRC RID723.6 Methods733.6.1 Initialize753.6.2 Initialize(TpudsCanhandle, tpudsbaudrate)3.6.3 Initialize(TPUdsCANhandle, TPUdSBaudrate, TPudSHWType, UInt32,UInt16)83.6.4 Uninitialize813.6.5 Setvalue843.6.6 Setvalue (TPUdsCanhandle, tpudsparameter, UInt32, uint32)843.6Setvalue (TPUdSCaNHandle, TPUDSParameter, stringBufferUint32)873.6.8 Setvalue (TPUDSANHandle, TPUDSParameter, Byte[], Uint32)883.6.9 Setvalue(Tpudscanhand le, tpudsparameter, IntPtr, UInt32)3.6.10 Getvalue933.6.11 Getvalue (TPUDSCANHandle, TPUDSParameter, StringBufferUint32)933.6. 12 Getvalue (TPUDSCANHandle, tpudsparameter, uint32, Uint32)963.6.13 Getvalue (TPUDsCaNHandle, TPUDSParameter, Byte l], UInt32)993.6. 14 Getvalue (TPUdSCAnhandle, tpudSParameter, Intptr, UInt32)1013.6.15 Getstatus1043.6.16Read1073.6.17 Write3.6.18 Reset1143.6.19 WaitForsing lemessage1163. 6.20 WaitFormultiplemessage1203.6.21 Waitforseryice1263.6.22 WaitForservicefunctional1303.6.23 ProcessResponse1333.6. 24 SvCDiagnosticsessioncontro l1383.6.25 SVCECUReset1413.6.26 SvcSecuri tyAccess1453.6.27 SvCCommunicationControl1483.6.28 SvcTesterpresent1523.6.29 SvcsecuredDataTransmission1553.6.30 SvcControlDTCSetting1583.6.31 SvcResponseonEvent1623.6.32 SVCLinkcontrol1663.6.33 SVCReaddatabyidentifier1703.6. 34 SvcReadMemory ByAddress1733.6.35 SvcReadscal ingdatabyidentifier1773.6. 36 SvcReadDataByperiodicIdentifier1803.6.37 SvcDynamicallydefinedataIdentifierDBID1843.6.38 SvcDynamicall ydefineDataIdentifierDBMA1883.6. 39 SvcDynamical lyDefineDataIdentifierCDDDI1933.6.40 SvcWri teDataByidentifier1973.6. 41 Svcwri teMemory byaddress2003.6.42 SvcClearDi agnosticInformation2053. 6. 43 SVCReadDTCInformation2083.6.44 SvCReadDTCInformationRDTCSSBDTC2113. 6. 45 SvCReaddTCInformationRDTCSSBRN215PCAN-UDS APi- User Manual3. 6.46 SVcReadDTCInformationReportExtended2183.6. 47 SvcReadDTCInformationReportseverity2213,648 SvcReaddTCInformationrsIodtc2253. 6.49 SvCReadDTCInformationNoParam2283.6.50 SvcInputout put contro byidentifier2323. 6.51 SyCRoutineControl2363.6.52 SvCReques tOwn load2393.6.53 SvcRequestUp load2433. 6.54 SVCTransferData2483.6.55 SvCRequestTransferExit2513.7 Functions2563.7.1 UDS Initialize2583.7.2 UDs Uninitialize2593.7.3 UDs Setvalue2603.7.4 UDs Getvalue2613.7.5 UDS Getstatus2623.7.6 UDS Read2643.7.7 UDs Write2653.7.8 UDs Reset2663.7.9 UDS_WaitForsinglemessage2673.7.10 UDS_waitForMultipleMessage2693.7.11 UDs Wai ce2723.7.12 UDS WaitForserviceFunctional2733.7.13 UDS_ Processresponse2753.7.14 UDS_SvcDiagnosticSessionControl2773.7.15 UDS SVCECUReset2783.7.16 DS_SVCSecuri tyAccess2803.7.17 UDS SVCCommunicationcontrol2813.7.18 UDs SvCTesterpresent2833719 UDS SvCSecuredDatatransmission2843.7.20 UDS_SvCControlDTCSetting2863.7.21 UDS_SVCResponseonEvent2873,7.22 UDs SVCLinkcontrol2893.7.23 UDS_SvcReaddatabyidentifier2913.7.24 UDS_SvcReadMemory byAddress2923.7.25 uDs_ SvcReadscalingdatabyidentifier2943.7.26 UDS_SvCReadDataBy Periodi iDentifier2953.7. 27 UDS_SVcDynamical l yDefineDataIdentifierDBID2973.7.28 UDS_SvcDynami call ydefinedataIdentifierDBMa2993.7.29 UDS_SvcDynami cal l yDefineDataIdentifierCDDDI3013. 7.30 UDS_SvcWriteDataByIdentifier3023,7.31 UDs SvcWri teMemorybyaddress3033.7. UDS_SvcClearDiagnosticInformation3053.7.33 UDS SVCReadDTCInformation3073.7. UDs SyCReadDTCInformationRdtCSSBDTC3093.7.35 uDs SvCReadDTCInformationRdtcssbrn3103.7.36 UDS_ SvCReadDTCInformationReportExtended3113.7.37 UDS_SvcReadDTCInformationReportseverity3133.7.38 UDS SVCReadDTCInformationRSIODTC3153,739 UDS SVCReadDTCInformationNoParam3163. 7.40 UDS_SvcInputoutput contro l byIdentifier3,7. 41 UDs SyCRoutinecontrol319PCAN-UDS APi- User Manual3.7.42 UDS_SvcRequestDown load3213.7.43 UDS_ SVCRequestupload32337.44 UDS SyCTransferData3253.7.45 UDS_SVCRequestTransferExit3263.8 Definitions3293.8.1 PCAN-UDS Handle Definitions3293.8.2 Parameter value defintions3313.8.3 TPUDSMsg Member value Definitions3323.8.4 PCAN-UDs Service parameter Definitions3334 Additional Information3354.1 PCAn Fundamentals33542 PCAN-Basic3364.3 UDS and ISO-TP Network Addressing Information3384.3.1 ISO-TP network addressing format3384.4 USing Events3405 License Information3426PCAN-UDS APi- User Manual1 PCAn-UDS APi DocumentationWelcome to the documentation of PCan-UD APl, a PEAK CAN API that implements ISo 15765-3, UDS in CANan international standard that allows a diagnostic tester(client) to control diagnostic functions in an on-vehicleElectronic Control Unit(ECU or serveIn the following chapters you will find all the information needed to take advantage of this aPlIntroduction on page 8DLL API Reference on page 10Additional Information on page 335PCAN-UDS APi- User Manual2 IntroductionPCAN-UDS is a simple programming interface intended to support windows automotive applications that usePEAK-Hardware to communicate with Electronic Control Units(ECU) connected to the bus systems of a car, formaintenance purpose2.1 Understanding PCAN-UDSUDS stands for Unified Diagnostic Services and is a communication protocol of the automotive industry. thisprotocol is described in the norm iSo 14229-1The UDS protocol is the result of 3 other standardized diagnostic communication protocolsIS0 14230-3, as known as Keyword 2000 Protocol(KWP2000L IS0 15765-3, as known as diagnostic on CANISo 15765-2, as known as ISo-TPThe idea of this protocol is to contact all electronic data units installed andCAN OBDninterconnected in a car, in order to provide maintenance, as checking for errors,actualizing of firmware, etcUDS is a Client/Server oriented protocol. In a UDS session(diagnostic session ),aprogram application on a computer constitutes the client(within UDS, it is calledPCAN-UDSTester), the server is the ecu being tested and the diagnostic requests from client toserver are called services. The client always starts with a request and this ends with apositive or negative response from the server(ECuSince the transport protocol of UDS is done using ISo-TP, an international standardPCAN ISOTPfor sending data packets over a CAN Bus, the maximum data length that can betransmitted in a single data-block is 4095 bytes.PCAN-UDS API is an implementation of the Uds on CAN standard the physicalcommunication is carried out by PCAN-Hardware (PCAN-USB, PCAN-PCI etc )throughPCAN-Basithe pCAN-ISo-TP and PCAN-Basic API (free CAN APls from PEAK-System). Because ofthis it is necessary to have also the pCAN-1S0-tP and PCAN-Basic APls(PCAN-ISO-TP. dll and PCAN Basic. dll) present on the working computer where UdS is intended tobe used. PCAN-UDS, PCAN-ISO-TP and PCan-Basic apis are free and available for allFigure 1: Relationship of thepeople that acquire a pCAn-hardware2.2 Using PCAN-UDSSince PCAN-UDS API is built on top of the PCAN-1So-TP API and PCAN-Basic APls, it shares similar functions. Itoffers the possibility to use several PCAn-UDS (PUds) channels within the same application in an easy way. Thecommunication process is divided in 3 phases: initialization interaction and finalization of a puds-channelInitialization In order to do UDS on CAN communication using a channel, it is necessary to initialize it first. Thisis done by making a call to the function UDS_ Initialize (class- method: InitializePCAN-UDS APi- User ManualInteraction: After a successful initialization a channel is ready to communicate with the connected can bus.Further configuration is not needed the 24 functions starting with UDS Svc(class-methods: starting with Svccan be used to transmit UdS requests and the utility functions starting with Uds WaitFor(class- methodsstarting with WaitFor) are used to retrieve the results of a previous request. the Uds read and UDS Write(class-methods: Read and Write are lower level functions to read and write UDs messages from scratch. Ifdesired, extra configuration can be made to improve a communication session, like service request timeouts orISo-TP parametersFinalization: When the communication is finished, the function UDS_ Uninitialize(class-method: Uninitializeshould be called in order to release the puds-channel and the resources allocated for it. In this way thechannel is marked as free"and can be used from other applications23 FeaturesI mplementation of the UDS protocol(iSo 14229-1)for the communication with control unitsWindows DLLs for the development of 32-bit and 64-bit applicationsPhysical communication via Can using a Can interface of the pcan seriesUses the pcan-Basic programming interface to access the can hardware in the computerUses the pCAn-ISo-TP programming interface(iso 15765-2)for the transfer of data packages up to 4095bytes via the can bus2.4 System Requi rementsL- Windows 10, 8.1, 7(32/64-bitAt least 512 Mb ram and 1 GHz CPUPC CAN interface from peak-SystemPCAN-Basic APlL PCAN-SO-TP API2.5 Scope of supplyInterface DLL, examples, and header files for all common programming languagesDocumentation in pdf formatDocumentation in HTML Help formatPCAN-UDS APi- User Manual3 DLL API ReferenceThis section contains information about the data types (classes, structures, types, defines enumerations)andAPI functions which are contained in the pcan-uds api3.1 NamespacesPEAK offers the implementation of some specific programming interfaces as namespaces for the. NEtFramework programming environment. The following namespaces are available:NamespacesNameDescription}PeakContains all namespaces that are part of the managed programming environment fromPEAK-SystemPeak CanContains types and classes for using the PCan aPi from PEAK-SystemPeak Can. LightContains types and classes for using the PCAn-Light API from PEAK-SystemPeak Can basicContains types and classes for using the pcan-Basic APl from PEAK-SystemPeak Can CcpContains types and classes for using the CCP API implementation from PEAK-SystemPeak Can XcpContains types and classes for using the XcP aPi implementation from PEAK-SystemPeak Can. Iso TpContains types and classes for using the pCAN-IS0-TP aPl implementation from PEAKSystelPeak Can, UdsContains types and classes for using the PCan-UDS API implementation from PEAK-SystemPeakCan.Obdll Contains types and classes for using the PCAN-OBDIll API implementation from PEAKSystemt}Peak. LinContains types and classes used to handle with lin devices from PEAK-Systemt}Peak. RP1210AContains types and classes used to handle with can devices from PEak-System through theTMC Recommended Practices 1210, version A, as known as RP1210(A3.1.1 Peak Can UdsThe peak Can. Uds namespace contains types and classes to use the pcan-UdS aPi within the. NET Frameworkprogramming environment and handle pcan devices from peak-SystemRemarks: Under the delphi environment, these elements are enclosed in the puds-Unit. the functionality of allelements included here is just the same. the difference between this namespace and the delphi unit consists inthe fact that delphi accesses the Windows api directly it is not managed code)AliasesAliasDescriptionTPUDSCANHandle Represents a pCAn-UDS channel handleClassesClassDescription像曰UDSApiDefines a class which represents the PCAN-UDS API10
    2020-06-27下载
    积分:1
  • nc 归化相关系数 图像对比 图像相似 matlab
    nc 归一化相关系数 图像对比 图像相似 matlab
    2020-12-04下载
    积分:1
  • ACM离线库(1200道)
    ACM离线题库(1200道)...............
    2020-12-11下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载