IcDorai>Alow,elseM()Background:a<τa1and1>τa2else(4)ShadowelseHighlightotherwise其中CD2与a分别代表均一化之后的两个偏离分量。这些方强烈依赖于上面提到的假设:阴影仅仅改变背景亮度而不改变色度。但是这个假设实际上并不总是有效,很多时候还需要更复杂的方法达到去除阴影,鉴别真正移动目标的目的。三高斯模型4就是针对去除阴影的考虑提出的。这个模型中采用三个高斯分布相结合(Figure5)对各像素进行建模。三个高斯成分分别为:道路、运动前景及阴影。这三个成分组合成为了完整的混合模型(b)和印甲品f叫intersityvaleFigure5三个高斯分布相结合6此方法之后面临的主要问题是如何通过一定时间的学习获得每个高斯分布的参数从而建立有效的模型。相关文献中提出采用EM算法(ExpectationMaximizationAlgorithm)进行学习。EM算法是一个迭代的算法,通过有限步的迭代就能够获得较好的模型估计。一般而言,为了从一个数据集中获得该数据集满足的混合分布,可以采用最大后验概率估计的方法进行估计,但是这样的方法需要关于每个数据分类的信息(即每个值属于哪个类别)。然而在移动目标检测过程中往往都是无监督的学习从而不可能获得这样的分类信息,而只能自动设定个预先的分类,然后通过迭代不断改进,这就是EM算法的基本思路另外,由于各点的数据是不断改变的,于是采川原始的EM算法对每一帧都进行重复的迭代既不必要也不现实,可以采用EM算法的一个变种:增量EM算法33高斯混合模型(GMM331背景建虞在某些场景之下,采用三个高斯分布的混合模型仍然无法有效地描述复杂的现实环境,于是髙斯混合模型四被提出了。高髙斯混合模型采用类似3.2中三个髙斯模型的思路,希望采用多个高斯分布相结合的方法来描述环境。与前面的模型不同的是,现在高斯分布的个数不是固定的一个或三个了,而是随着各个像素实际的需要动态地进行设定。另外该方法也放弃采用费时的EM算法而采用更快捷的方式进行背景建模与更新。假设已知像素(xo,y)在过去一段时间中的颜色值或灰度值{X1,…,X}={(xo,yo,):1≤i≤t(5)若由K个高斯分布的高斯混合模型对该像素进行建模,则新观察到一个颜色值或灰度值的概率为P(x1)=)o*n(x,,E(6)在RGB等彩色空间中为了简化计算可以采用如下公式k,t7)ADempster,N.Laird,andD.Rubin,"MaximumLikelihoodfromIncompleteDataviatheEMalgorithm",JournaloftheRoyalStatisticalSociety,pp.1-38,1977这个公式假设了各个颜色分量是相互独立的。尽管事实并不如此,但这样计算在保留充分的精确性的同时大大降低了计算复杂性。这样每个像素就采用κ个峰的髙斯混合模型完成了建模。剩余的问题同样是如何对模型中的各个参数进行估计,以及如何判别前景。3.3.2背景更新背景更新大致有这几个步骤:a.每一个新的值都与所有K个高斯分布进行匹配,直到找到充分吻合的分布(判断方式与均值-阈限方法类似)b.若新的值与所有K个分布都不接近,则将K个分布中权值最小的一个替换成一个新的分布,该分布以新的值为均值,并且具有很高的初始方差和很低的初始权重;C.若新的值与某个分布充分接近,则认为其属于该分布并更新各个分布的权值及参数Ort=(1-aOKt-1+aM(8)=(1-p)ut-1+p·X(9)=(1-p)21+p(X-1)(x-2)(10)here(kok(11)其中(8)式中Mkt对于匹配上的分布唯1,对于其他分布为0α表示适应性的强弱,α越大,给予新的值的权重越大,也就适应得越快;(9)式(10)式仅针对匹配上的分布,而其他分布的参数保持不表3.3.3前景检测运动前景的检测主要有以下几个步骤a.对所有的高斯分布按照ω/σ进行从大到小的排序;b.取前B个高斯分布,满足B=argminkT(12)k=其中T表示背景应该占的比重,如果T取得较小则类似于前面介绍的均值阈限模型,T取得较大则允许背景有更丰富的特性,如随风摆动的树叶或水面的波纹等等。C.如果当前出现的新的值并不符合这B个高斯分布,则认为是运动的前景,否则认为是背景。34非参数模型341背景建模为了能够更快速地适应变化的背景,并且保证对移动物体的敏感性,马里兰大学A.Elgammal等人提岀采用非参数的模型四对各个像素进行建模。该方法并不指定确切模型形式,而釆用核旳数来利用历史薮据建立模型。在釆用高斯核的情况下,一个颜色出现的概率’∑K(x-x∑∏1(13)2这样实际上就是对考虑范围内所有的历史值都建立一个高斯分布,并利用所有这些分布对当前值进行分析。由于高斯分布的假设,故(x1+1-x1)~N(0272),于是可以估计方差(14)0.68V2其中m是|x+1-xl的中位数。号外由于在这种方法下需要大量计算核函数的值,故可以预先计算出一定精度的核函数数据表,通过查表的方法大大加快计算的速度。实验表明这样的方法在一般的PC机上是可以达到实时的计算要求的。34.2减少错误检测为了降低由于局部抖动(如树叶抖动、摄像机抖动)带来的错误检测,该方法利用了一定的区域信息。原先的P(x1)现在改用Pm(x代替PN(t=maxyEN(x)PrixByy(15)此处N(x)指该像索周围的一个小区域,B指像素y对应的背景模型。这样就充分降低了由于小范围抖动导致的错误检测。7该式成立仍然需要假设各个颜色分量相互独京。9该方法需要维护两个背景模型:长期模型及短期模型。其中短期的模型是为了能够快速适应变化的背景而提出的,仅利用相当短的一段历史值建立模型,另外该模型采用选择更新机制(仅对判定属于背景的值进行更新);长期的模型在相当长的时间内通过盲更新机制(对所有值进行更新)获得。两个模型判定结果的交集能够进一步降低错误的检测,但同时也去除了部分实际上是移动目标的部分。最终采用的策略为:所有由短期模型检测出来,并且与两个模型判定结果交集相邻的像素被视作运动的前景3.4.3去除阴景这个方法同样提到了去除阴影的问题(Figure6)采用RGB颜色模型的一个变种<,g,S>表示颜色:RBR+G+B·9=R+G+Bb=R+G+B′(16)s=RtG+B(17)令A为某个像素在一定时间内的取值,而定义B如下B={x1|x∈A≤≤阝(18)其含义就是该像素过去的背景取值中与当前值亮度接近的值的集合利用B中的值在(r,g)二维空间上进行上述的背景建模及前景检测,就能很有效地消除检测的阴影。Figure6非参数模型下的阴影去除4基于区域的移动目标检测从上面的介绍的方法来看,建立的背景模型越来越复杂:高斯分布的个数从一个到三个,再到K个,再到每个历史值各一个。这样的背景模型已经具有了高度的复杂性,但是在有些应用环境下效果仍然并不理想。反思一下这些方法的特点,仅仅利用各个像素的独立信息而没有考虑像素之间的关联性是键的原因。其实在3.42中采用方法实际上已经开始尝试以局部区域作为考虑问题的范围,-IMDN开发者社群-imdn.cn"> IcDorai>Alow,elseM()Background:a<τa1and1>τa2else(4)ShadowelseHighlightotherwise其中CD2与a分别代表均一化之后的两个偏离分量。这些方强烈依赖于上面提到的假设:阴影仅仅改变背景亮度而不改变色度。但是这个假设实际上并不总是有效,很多时候还需要更复杂的方法达到去除阴影,鉴别真正移动目标的目的。三高斯模型4就是针对去除阴影的考虑提出的。这个模型中采用三个高斯分布相结合(Figure5)对各像素进行建模。三个高斯成分分别为:道路、运动前景及阴影。这三个成分组合成为了完整的混合模型(b)和印甲品f叫intersityvaleFigure5三个高斯分布相结合6此方法之后面临的主要问题是如何通过一定时间的学习获得每个高斯分布的参数从而建立有效的模型。相关文献中提出采用EM算法(ExpectationMaximizationAlgorithm)进行学习。EM算法是一个迭代的算法,通过有限步的迭代就能够获得较好的模型估计。一般而言,为了从一个数据集中获得该数据集满足的混合分布,可以采用最大后验概率估计的方法进行估计,但是这样的方法需要关于每个数据分类的信息(即每个值属于哪个类别)。然而在移动目标检测过程中往往都是无监督的学习从而不可能获得这样的分类信息,而只能自动设定个预先的分类,然后通过迭代不断改进,这就是EM算法的基本思路另外,由于各点的数据是不断改变的,于是采川原始的EM算法对每一帧都进行重复的迭代既不必要也不现实,可以采用EM算法的一个变种:增量EM算法33高斯混合模型(GMM331背景建虞在某些场景之下,采用三个高斯分布的混合模型仍然无法有效地描述复杂的现实环境,于是髙斯混合模型四被提出了。高髙斯混合模型采用类似3.2中三个髙斯模型的思路,希望采用多个高斯分布相结合的方法来描述环境。与前面的模型不同的是,现在高斯分布的个数不是固定的一个或三个了,而是随着各个像素实际的需要动态地进行设定。另外该方法也放弃采用费时的EM算法而采用更快捷的方式进行背景建模与更新。假设已知像素(xo,y)在过去一段时间中的颜色值或灰度值{X1,…,X}={(xo,yo,):1≤i≤t(5)若由K个高斯分布的高斯混合模型对该像素进行建模,则新观察到一个颜色值或灰度值的概率为P(x1)=)o*n(x,,E(6)在RGB等彩色空间中为了简化计算可以采用如下公式k,t7)ADempster,N.Laird,andD.Rubin,"MaximumLikelihoodfromIncompleteDataviatheEMalgorithm",JournaloftheRoyalStatisticalSociety,pp.1-38,1977这个公式假设了各个颜色分量是相互独立的。尽管事实并不如此,但这样计算在保留充分的精确性的同时大大降低了计算复杂性。这样每个像素就采用κ个峰的髙斯混合模型完成了建模。剩余的问题同样是如何对模型中的各个参数进行估计,以及如何判别前景。3.3.2背景更新背景更新大致有这几个步骤:a.每一个新的值都与所有K个高斯分布进行匹配,直到找到充分吻合的分布(判断方式与均值-阈限方法类似)b.若新的值与所有K个分布都不接近,则将K个分布中权值最小的一个替换成一个新的分布,该分布以新的值为均值,并且具有很高的初始方差和很低的初始权重;C.若新的值与某个分布充分接近,则认为其属于该分布并更新各个分布的权值及参数Ort=(1-aOKt-1+aM(8)=(1-p)ut-1+p·X(9)=(1-p)21+p(X-1)(x-2)(10)here(kok(11)其中(8)式中Mkt对于匹配上的分布唯1,对于其他分布为0α表示适应性的强弱,α越大,给予新的值的权重越大,也就适应得越快;(9)式(10)式仅针对匹配上的分布,而其他分布的参数保持不表3.3.3前景检测运动前景的检测主要有以下几个步骤a.对所有的高斯分布按照ω/σ进行从大到小的排序;b.取前B个高斯分布,满足B=argminkT(12)k=其中T表示背景应该占的比重,如果T取得较小则类似于前面介绍的均值阈限模型,T取得较大则允许背景有更丰富的特性,如随风摆动的树叶或水面的波纹等等。C.如果当前出现的新的值并不符合这B个高斯分布,则认为是运动的前景,否则认为是背景。34非参数模型341背景建模为了能够更快速地适应变化的背景,并且保证对移动物体的敏感性,马里兰大学A.Elgammal等人提岀采用非参数的模型四对各个像素进行建模。该方法并不指定确切模型形式,而釆用核旳数来利用历史薮据建立模型。在釆用高斯核的情况下,一个颜色出现的概率’∑K(x-x∑∏1(13)2这样实际上就是对考虑范围内所有的历史值都建立一个高斯分布,并利用所有这些分布对当前值进行分析。由于高斯分布的假设,故(x1+1-x1)~N(0272),于是可以估计方差(14)0.68V2其中m是|x+1-xl的中位数。号外由于在这种方法下需要大量计算核函数的值,故可以预先计算出一定精度的核函数数据表,通过查表的方法大大加快计算的速度。实验表明这样的方法在一般的PC机上是可以达到实时的计算要求的。34.2减少错误检测为了降低由于局部抖动(如树叶抖动、摄像机抖动)带来的错误检测,该方法利用了一定的区域信息。原先的P(x1)现在改用Pm(x代替PN(t=maxyEN(x)PrixByy(15)此处N(x)指该像索周围的一个小区域,B指像素y对应的背景模型。这样就充分降低了由于小范围抖动导致的错误检测。7该式成立仍然需要假设各个颜色分量相互独京。9该方法需要维护两个背景模型:长期模型及短期模型。其中短期的模型是为了能够快速适应变化的背景而提出的,仅利用相当短的一段历史值建立模型,另外该模型采用选择更新机制(仅对判定属于背景的值进行更新);长期的模型在相当长的时间内通过盲更新机制(对所有值进行更新)获得。两个模型判定结果的交集能够进一步降低错误的检测,但同时也去除了部分实际上是移动目标的部分。最终采用的策略为:所有由短期模型检测出来,并且与两个模型判定结果交集相邻的像素被视作运动的前景3.4.3去除阴景这个方法同样提到了去除阴影的问题(Figure6)采用RGB颜色模型的一个变种<,g,S>表示颜色:RBR+G+B·9=R+G+Bb=R+G+B′(16)s=RtG+B(17)令A为某个像素在一定时间内的取值,而定义B如下B={x1|x∈A≤≤阝(18)其含义就是该像素过去的背景取值中与当前值亮度接近的值的集合利用B中的值在(r,g)二维空间上进行上述的背景建模及前景检测,就能很有效地消除检测的阴影。Figure6非参数模型下的阴影去除4基于区域的移动目标检测从上面的介绍的方法来看,建立的背景模型越来越复杂:高斯分布的个数从一个到三个,再到K个,再到每个历史值各一个。这样的背景模型已经具有了高度的复杂性,但是在有些应用环境下效果仍然并不理想。反思一下这些方法的特点,仅仅利用各个像素的独立信息而没有考虑像素之间的关联性是键的原因。其实在3.42中采用方法实际上已经开始尝试以局部区域作为考虑问题的范围, - IMDN开发者社群-imdn.cn">
登录
首页 » Others » 视频中背景建模目标检测综述(北京大学)

视频中背景建模目标检测综述(北京大学)

于 2020-12-03 发布
0 297
下载积分: 1 下载次数: 4

代码说明:

基于视频的移动目标检测是一个重要且有挑战性的任务,在许多应用中都起到相当关键的作用。本次论文研读围绕该主题展开,深入阅读了十余篇论文,在本文总结了视频中移动目标检测的一些主要方法及各自的优劣。报告接下来的部分组织如下:第二节介绍一般问题的陈述及典型的应用,第三节与第四节分别介绍基于像素的移动目标检测方法与基于区域的移动目标检测方法,第五节进行简单的讨论与总结。2问题陈述及应用一般而言移动目标检测并不单独地构成应用,而是作为一个组件出现在许多实际的应用之中。故移动目标检测的具体要求随着应用的改变而有很大的不同。例如对足球场上球员及足球的检测与跟踪就和对视频中用户手势的跟踪有所不同,前者的关键在于如何应对复杂的光照变化有效提取运动物体,后者的难点则在于如何从整个躯休大范围的运动背景中将手势的运动识别并提取出来。尽管不同的应用可能提出不同的技术上的要求,但是相当一部分这类问题还是可以在同一的框架下进行探讨和比较的。以下就是本文讨论范围内一般问题的陈述( Figure1):a.高层次的模型一般具有检测、跟踪、识别三个模块,其中识别模块并不必须b.检测模块可细分为移动日标区域检测与移动目标分组,其中前者是这个模块能够顺利工作的保证,其日的是将各帧内移动日标所在的区域标出该模型的输入为连续的视频,输出为跟踪的物体(即轨迹)或分类的物体,DetectioTrackingbackgroundObject detectionMatching usingFramescolor texture andTrackedsubtractionusing contoursmotion featuresobiectsGr。 up handling(merging andlittonFigure1系统框架图中即为一个典型的流程图,其中省略了分类模块并把运动目标区域检测规定为背景差分方法。该模型的典型应用场景是室内外的视频监视分析( Figure2),特别是交通数据的分析。另外体育运动视频(如足球或台球)的分析也能在该模型下解决。Figure2移动目标检测的典型应用:视频监控本文讨论的就是这样一个系统之中移动目标检测部分内容,并且将重点放在了如何判定移动目标区域的部分。这是这样的系统中的最初的处理,对于之后的处理能否获得有效的信息至关重要。该内容主要涉及两个问题:如何提取运动的前景,及如何建立一个良好的背景模型。后者一般并不是应用任务中所要求完成的,但往往是用以提取运动前景很好辅助工具,将新的一帧“减去”背景即可获得移动前景,故同时具有这两个步骤的方法也被称为“背景差分”,是移动目标检测中的一大类主流方法,本报告中涉及的大部分方法即属于这一类3基于像素的移动目标检测31均值-阈限方法均值-阈限( Figure3)的基本思路是计算每个像素的平均值和标准差作为它的背景模型Mean 2*Avg DiffMean”Mean-2*Avg DiffFigure3均值-國限方法4图中为某视频中单个像素在一定时间内不断更新得到的平均值和平均差值3,该像素处在天空的位置,在一段时问后有人的手挥过该区域,可以看到由于前景目标明显不如背景中的天空明亮,所以可以很容易将其分辨出来实际上均值-阈限方法就是赋予视频中每个像素一个统计上的背景模型,例如高斯分布模型4。每个点需要两个参数来衡量:均值与方差。后面将看到,许多更先进的棊于像素的移动目标检测方法其实无非采用了更复杂的分布模型来描述每个像素32阴影去除及三高斯模型简单的帧差值或均值-阈限方法在很多应川中都面临一个很严重的问题:阴影。在某些光照条件下,移动物体产生的阴影相对背景具有非常显著的差别从而被识别成了前景,有时这些阴影比物体本身还人,并且导致原本独立的运动物体连接在一起无法分割。一种简单的思路是放弃使用灰度值进行背景建模,而采用颜色信息从而将阴影的移动去除掉。这类方法需要一条假设:移动目标投射到路面上的阴影主要改变了该位置的亮度而对色度没有大的影响°。部分情况下确实可以承认该假设。在不同的颜色模型下有不同提取亮度信息的方式。在HSV等空间中这个任务尤为简单,因为亮度本身就是一个独立的分量,所以在该分量以外的维度上进行背景建模与差分就能消除一定的阴影。如果在常用的RGB颜色空间中,亮度的提取就稍微复杂倒。Figure4RGB空间中的亮度与色度3类似标准差的作用,但是计算更快捷。C.R. Wren, A Azarbayejani, T. Darrell, and A P Pentland "pfinder Real-Time Tracking of the human body lEEETrans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July 1997J.M. Alvarez, A Lopez, and r Baldrich, " Illuminant-Invariant Model-Based Road Segmentation",IEEE IntelligentVehicles Symposium, June 20085将一个像素的颜色值在RGB三维空间中表示( Figure4),背景建模就是确定了穿过原点的一条色度直线,所有在该直线上的颜色都认为是背景色。当前颜色相对参考颜色(背景)的亮度分量a1由最小化下式给出:φ(a;)=(l1-c1E)2a2表示该像素当前值相对参考背景色的相对亮度。如果其值为1则代表亮度相同,大于1代表比背景更亮,小于1代表比背景更培当前颜色到色度直线的垂直距离就表小色度的偏离:CD1=‖l2-aE1‖(3)利用色度与亮度的偏离值就可以将新的颜色值分为四个类别Forground: CDi> IcD or ai> Alow, elseM()Back ground:aτa2else(4)ShadowelseHighlightotherwise其中CD2与a分别代表均一化之后的两个偏离分量。这些方强烈依赖于上面提到的假设:阴影仅仅改变背景亮度而不改变色度。但是这个假设实际上并不总是有效,很多时候还需要更复杂的方法达到去除阴影,鉴别真正移动目标的目的。三高斯模型4就是针对去除阴影的考虑提出的。这个模型中采用三个高斯分布相结合( Figure5)对各像素进行建模。三个高斯成分分别为:道路、运动前景及阴影。这三个成分组合成为了完整的混合模型(b)和印甲品f叫intersity valeFigure5三个高斯分布相结合6此方法之后面临的主要问题是如何通过一定时间的学习获得每个高斯分布的参数从而建立有效的模型。相关文献中提出采用EM算法( ExpectationMaximization Algorithm)进行学习。EM算法是一个迭代的算法,通过有限步的迭代就能够获得较好的模型估计。一般而言,为了从一个数据集中获得该数据集满足的混合分布,可以采用最大后验概率估计的方法进行估计,但是这样的方法需要关于每个数据分类的信息(即每个值属于哪个类别)。然而在移动目标检测过程中往往都是无监督的学习从而不可能获得这样的分类信息,而只能自动设定个预先的分类,然后通过迭代不断改进,这就是EM算法的基本思路另外,由于各点的数据是不断改变的,于是采川原始的EM算法对每一帧都进行重复的迭代既不必要也不现实,可以采用EM算法的一个变种:增量EM算法33高斯混合模型(GMM331背景建虞在某些场景之下,采用三个高斯分布的混合模型仍然无法有效地描述复杂的现实环境,于是髙斯混合模型四被提出了。高髙斯混合模型采用类似3.2中三个髙斯模型的思路,希望采用多个高斯分布相结合的方法来描述环境。与前面的模型不同的是,现在高斯分布的个数不是固定的一个或三个了,而是随着各个像素实际的需要动态地进行设定。另外该方法也放弃采用费时的EM算法而采用更快捷的方式进行背景建模与更新。假设已知像素(xo,y)在过去一段时间中的颜色值或灰度值{X1,…,X}={(xo,yo,):1≤i≤t(5)若由K个高斯分布的高斯混合模型对该像素进行建模,则新观察到一个颜色值或灰度值的概率为P(x1)=)o*n(x,,E(6)在RGB等彩色空间中为了简化计算可以采用如下公式k,t7)A Dempster, N. Laird, and D. Rubin, "Maximum Likelihood from Incomplete Data via the EM algorithm", Journalof the Royal Statistical Society, pp. 1-38, 1977这个公式假设了各个颜色分量是相互独立的。尽管事实并不如此,但这样计算在保留充分的精确性的同时大大降低了计算复杂性。这样每个像素就采用κ个峰的髙斯混合模型完成了建模。剩余的问题同样是如何对模型中的各个参数进行估计,以及如何判别前景。3.3.2背景更新背景更新大致有这几个步骤:a.每一个新的值都与所有K个高斯分布进行匹配,直到找到充分吻合的分布(判断方式与均值-阈限方法类似)b.若新的值与所有K个分布都不接近,则将K个分布中权值最小的一个替换成一个新的分布,该分布以新的值为均值,并且具有很高的初始方差和很低的初始权重;C.若新的值与某个分布充分接近,则认为其属于该分布并更新各个分布的权值及参数Ort=(1-aOKt-1+aM(8)=(1-p)ut-1+p·X(9)=(1-p)21+p(X-1)(x-2)(10)here(kok(11)其中(8)式中Mkt对于匹配上的分布唯1,对于其他分布为0α表示适应性的强弱,α越大,给予新的值的权重越大,也就适应得越快;(9)式(10)式仅针对匹配上的分布,而其他分布的参数保持不表3.3.3前景检测运动前景的检测主要有以下几个步骤a.对所有的高斯分布按照ω/σ进行从大到小的排序;b.取前B个高斯分布,满足B= argminkT(12)k=其中T表示背景应该占的比重,如果T取得较小则类似于前面介绍的均值阈限模型,T取得较大则允许背景有更丰富的特性,如随风摆动的树叶或水面的波纹等等。C.如果当前出现的新的值并不符合这B个高斯分布,则认为是运动的前景,否则认为是背景。34非参数模型341背景建模为了能够更快速地适应变化的背景,并且保证对移动物体的敏感性,马里兰大学A. Elgammal等人提岀采用非参数的模型四对各个像素进行建模。该方法并不指定确切模型形式,而釆用核旳数来利用历史薮据建立模型。在釆用高斯核的情况下,一个颜色出现的概率’∑K(x-x∑∏1(13)2这样实际上就是对考虑范围内所有的历史值都建立一个高斯分布,并利用所有这些分布对当前值进行分析。由于高斯分布的假设,故(x1+1-x1)~N(0272),于是可以估计方差(14)0.68V2其中m是|x+1-xl的中位数。号外由于在这种方法下需要大量计算核函数的值,故可以预先计算出一定精度的核函数数据表,通过查表的方法大大加快计算的速度。实验表明这样的方法在一般的PC机上是可以达到实时的计算要求的。34.2减少错误检测为了降低由于局部抖动(如树叶抖动、摄像机抖动)带来的错误检测,该方法利用了一定的区域信息。原先的P(x1)现在改用Pm(x代替PN(t= maxyEN(x)Prix Byy(15)此处N(x)指该像索周围的一个小区域,B指像素y对应的背景模型。这样就充分降低了由于小范围抖动导致的错误检测。7该式成立仍然需要假设各个颜色分量相互独京。9该方法需要维护两个背景模型:长期模型及短期模型。其中短期的模型是为了能够快速适应变化的背景而提出的,仅利用相当短的一段历史值建立模型,另外该模型采用选择更新机制(仅对判定属于背景的值进行更新);长期的模型在相当长的时间内通过盲更新机制(对所有值进行更新)获得。两个模型判定结果的交集能够进一步降低错误的检测,但同时也去除了部分实际上是移动目标的部分。最终采用的策略为:所有由短期模型检测出来,并且与两个模型判定结果交集相邻的像素被视作运动的前景3.4.3去除阴景这个方法同样提到了去除阴影的问题( Figure6)采用RGB颜色模型的一个变种表示颜色:RBR+G+B·9=R+G+Bb=R+G+B′(16)s=RtG+B(17)令A为某个像素在一定时间内的取值,而定义B如下B={x1|x∈A≤≤阝(18)其含义就是该像素过去的背景取值中与当前值亮度接近的值的集合利用B中的值在(r,g)二维空间上进行上述的背景建模及前景检测,就能很有效地消除检测的阴影。Figure6非参数模型下的阴影去除4基于区域的移动目标检测从上面的介绍的方法来看,建立的背景模型越来越复杂:高斯分布的个数从一个到三个,再到K个,再到每个历史值各一个。这样的背景模型已经具有了高度的复杂性,但是在有些应用环境下效果仍然并不理想。反思一下这些方法的特点,仅仅利用各个像素的独立信息而没有考虑像素之间的关联性是键的原因。其实在3.42中采用方法实际上已经开始尝试以局部区域作为考虑问题的范围,

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MFRC522原理图和
    自己做的mfrc522的资料,里面有硬件电路和程序代码,希望对大家有帮助。
    2020-12-10下载
    积分:1
  • 基于小波变换多尺度边缘检测
    这是一个小波变换的图像边缘检测,主要使用与matlab。里面包含了一份基于小波变换的多尺度边缘检测的文章,以及全套的程序。
    2020-11-30下载
    积分:1
  • 谐波分析
    谐波分析程序,使用fft对模拟信号进行谐波分析
    2020-12-04下载
    积分:1
  • 基于51单片机的电子琴序 protues仿真
    基于51单片机c语言电子琴程序 并用protues 仿真按键发音
    2020-12-11下载
    积分:1
  • loveyou系列源码(8套表白源码)
    程序员表白程序,开放源码,不断更新(第三篇:第二弹),这是loveyue系列的源码,详情请参照博客:http://blog.csdn.net/wuxia2001/article/details/45743641
    2020-02-15下载
    积分:1
  • 基于Java的企业门户网站源代码
    基于Java的企业门户网站源代码,简单好用
    2020-12-07下载
    积分:1
  • 瑞萨的can的资料CAN的入门书。做的很好的资料
    瑞萨的can的资料CAN的入门书,很好的学习资料,RENESAS应用手册是什么?是的缩写(以下称为),是国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。巾于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,巾多条总线构成的情况很多,线束的数量也随之增加。为适应“诚少线束的数量”、“通过多个,进行大量数据的高速通信”的需要牛德国电气商博世公司开发出面向汽车的通信协议。此后,通过及行了标准化,现在在欢洲已是汽车网络的标准协议。现在,的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。图是车载网终的构想示意图。等通信协议的开发,使多种通过网关进行数据交换得以实现。马达马达。。马达开关开关。安全画乘客检测空调子网车门雷达且且且子网白线检测伙表级遥控车身部自逗应引爆管巡航前大灯窗电动组合灯网关囊控制发动机胎压部信息部MCcD音视频父通信电子防发动机转向制动子网碟盒息导航盗系统动变底盘部故障诊断部(规格)诊断工具图车载网络构想注】国际标准化组织为戴姆勒克莱斯勒公司注册商标。RENESAS应用手册的应用示例图为的应用示例图的应用示例ENESAS应用手册总线拓扑图控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。图是的连接小意图收发器收发器连接图R∈NEs∧s应用手册的特点协议只有以下特点多主控制在总线空闲吋,所有的单元都可开始发送消息(多主控制)最先访问总线的单元可获得发送权(方式)。多个单元同时开始发送时,发送高优先级消息的单元可获得发送权。消息的发送在协议中,所有的消息都以固定的柊式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(以下称为)决定优先级。并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最扃)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。系统的柔软性与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变通信速度根据整个网络的规模,可设定适合的通信速度。在同一网络中,所冇单元必须改定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输岀错误信号,妨碍整个网络的通信。不同网终间则可以有不同的通信速度。远程数据请求可通过发送“遥控帧”请求其他单元发送数据。错误检测功能·错误通知功能·错误恢复功能所有的单元都可以检测错误(错误检测功能)。检测出错误的单元会立即同时通知其他所有单元(错误通知功能)正在发送消息的单元一旦检测出错误,会强制结東当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。故障封闭可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的效据错误(如单元内部改障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。连接总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的吋间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提扃通信速度,则可连接的单元数减少。【注】R∈NEs∧s应用手册错误错误状态的种类单元始终处于种状态之一。主动错误状态动错误状态是可以正常参加总线通信的状态处于主动错误状态的单元检测出错误时,输出主动错误标志被动错误状态被动错误状态是易引起错误的状态。处于被动错误状态的单元虽能参加总线通信,但为不妨碍其它单元邇信,接收时不能秋极地发送错误通知。处于被动错误状态的单元即使检测出错误,而貫它处于主动错误状态的单元如果没发现错误,整个总线也被认为是没有错误的处于被动错误状态的单元检测出错误时,输出被动错误标志。另外,处于被动错误状态的单元在发送结束后不能马上再次开始发送。在开始下次发送前,在间隔帧期间内凶须插入“延迟传送个位的隐性位总线关闭态总线关闭态是不能参加总线上通信的状态信息的接收和发送均被禁止。这些状态依靠发送错误计数和接收错误计数来管理,根据计数值决定进入何种状态。错误状态和计数值的关系如表及图所小。表错误状态和计数值单元错误状态发送错误计数值()接收错误计数值()主动错误状态被动错误状态且或总线关闭态ENESAS应用手册初始状态主动错误状态或在总线上检测到次连续的个位的隐性位被动错误状态总线关闭态发送错误计数值接收错误计数值图单元的错误状态R∈NEs∧s应用手册错误计数值发送错误计数值和接收错误计数值根据一定的条件发生变化。错误计数值的变动条件如表所示。一次数据的接收和发送可能同时满足多个条件错误计数器在错误标志的第一个位出现的时间点上开始计数。表错误计数值的变动条件接受和发送错误计数值的变动条件发送错误计数值接收错误计数值接收单元检测出错误时例外:接收单元在发送错误标志或过载标志中检测出“位错误”时,接收错误计数值不增加接收单元在发送完错误标志后检测到的第一个位为显性电平时。发送单元在输出错误标志时发送单元在发送主动错误标志或过载标志时,检测出位错误接收单元在发送主动错误标志或过载标志时,检测出位错误各单元从主动错误标志、过载标志的最开始检测出连续发送时接收时个位的显性位时之后,每检测出连续的个位的显性位时。检测岀在被动错误标志后追加的连续个位的显性位时。发送时接收时发送单元正常发送数据结束时(返回且到帧结束也未检测出错误时)。时±接收单元正常接收数据结束时(到未检测出错误且正时常返回时)时设处于总线关闭态的单元,检测到连续个位的隐性位。R∈NEs∧s应用手册协议的基本概念协议如表所示涵盖了规定的基本参照模型中的传输层、数据链路层及物理层协议中关于基本参照模型中的传输层、数据链路层及物理层,具体有哪些定义如图所示。表基本参照模型基本参照模型各层定义的主要项目层:应用层由实际应用程序提供可利用的服务。层:表示层进行数据表现形式的转换。如:文字设定、数据压缩、加密等的控制指层:会话层为建立会话式的通信,控制数据正确地接收和发送。探层:传输层控制数据传输的顺序、传送错误的恢复等,保证通信的品质。如:错误修正、再传输控制。层:网络层进行数据传送的路由选择或中继如:单元间的数据交换、地址管理。层:数据链路层将物理层收到的信号(位序列)组成有意义的数据,提供传输错误控制等数据传输控制流程。如:访问的方法、数据的形式通信方式、连接控制方式、同步方式、检错方式一共应答方式、通信方式、包(帧)的构成。位的调制方式(包括位时序条件)。层:物理层规定了通信时使用的电缆、连接器等的媒体、电气信号规格等,以实现设备间的信号传送。如:信号电平、收发器、电缆、连接器等的形态【注】(开放式系统间互联)
    2020-12-10下载
    积分:1
  • Grobner基的经典书籍----Grobner Bases A Computational Approach to Commutative Algebra
    有关Grobner基的经典书籍Grobner基是代数计算中的经典工具。Grobner Bases A Computational Approach to Commutative Algebra
    2020-12-01下载
    积分:1
  • 基于C++ MFC的学生宿舍管理系统
    基于c++MFC的学生宿舍管理系统,可以增加,删除,修改和查询学生信息
    2020-12-03下载
    积分:1
  • Matlab混沌工具箱
    很好的matlab混沌工具箱 可以看到源代码
    2020-12-08下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载