登录
首页 » Others » BCH编译码c语言实现

BCH编译码c语言实现

于 2020-12-04 发布
0 221
下载积分: 1 下载次数: 1

代码说明:

本资源给出了bch码的编译码的c语言代码,可以通用

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于wola技术
    基于wola技术,包括多相滤波器设计及仿真和英文资料
    2020-11-27下载
    积分:1
  • 矩阵论 方保镕 周继东 李医民 课本pdf
    清华大学出版社 矩阵论 方保镕 周继东 李医民 课本pdf格式本当较系纯,全面地介绍了矩阵的基本理论、方法及其应用,其配书光盘包含全书客量习趣评解和拟考试自测试题解答提示本书在编写过程中。力求做到以下几点理论严谨。重点突出:既重视几何理论,又兼应用背景或異体应用结构合理,既有系统性,适合全面阅该(多学时)又具有可分性,便于逃读(少学时3取材丰露(活多种特殊矩阵与持运算选则,面海前沿。能反哄最看进展(如辛空问。辛变换)4深入浅出,文字流畅,读本书只需具番高等数学和线性代数的基本知识IsBN7-302-09208-79787302092087定价:39.00元《含光盘0151,2125D矩阵论Matrix Theory方保鎔周继东李医民编著Fang Baurmng Zhs Jidong Li Yimin北业老图014⑨清华大学出版社 Springer北京内容介本书比较全面、系统地介绍了矩阵的基本理论方法及其应用。仝书分上,下两篇,共1章,分别介绍线性空间与线性算子内积空间与等积变换,A矩阵与若尔当标准形,赋炮线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非角矩阵与正矩阵循环炬阵与素炬阵随机矩阵和双随机矩阵单调矩M矩阵与H矩阵、T矩阵与克尔矩阵等),辛空间与辛矩阵等内容。各章均配有一足数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考本书备有一张光盘,其中包含各章习题详解和模孜考试自测试题的解答提示等供读者选用本书可作为理工科大学各专业研窕生的学位课程教材,也可怍为理王科和师范类院佼高年级本科生的选修课教材,并可供有美专业的敦师和工程技术人员参考版权所有剩印必究。举报电话:01062782989139011042913860310933书在版编自(QP)数据矩阵论/方保幣,周继东,李医民编著.北京:清华大学出版社,204.111SBN7-302092087矩…·Ⅲ.①方…鬧…③李…Ⅲ.矩阵一理论一高等学校一教材Ⅳ,Oλ51.21中国版本图书馆C数据核字(204)第082981号出版者:清华大学出版社址址:北京清华大学学研大厦http邮编:100084社总机:010-62770175害户服务:010-62776969组稿填辑:陈朝群文稿鶄辑;王海印装者:北京鑫海金溴胶印有限公司发行音:新华书店总店北京发行所开本::85×280印:25字数:532千字版次;2004年1]月第1雁2004年11月箱1次印刷书甘:lSBN7-302092087/0·389印:i~50c0定价:39.00元(含光盘本书如存文字不清漏印以及缺页倒页脱团等印装质量问题,请与清华人学出版社出版部联系调換。联系电话:(010)627701753:03或010)6279704FOREWORD前言随看科学技术的迅速发展古典的线性代数知识已不能满足现代科技的需要矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析,优化理论徵分方程概率统计,控制论,力学,电子学网络等学科领域郡与矩阵理论有着密切的联系,甚至在经济管理、金融,保险,社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。目前,全国的工科院校已普遍把“矩阵论”作为研究生的必修课。为此,1989年我们根据国家教委制定的工科研究生学习矩降论”课程的基本要求编写了这本教材,并于1993年和19年由河海大学出版社正式出版,在部分高校讲授过多年。为使本书适应新世纪的要求,这次又对本书进行了充实更新,并对内容作了精心的处理。奉书内容分上,下篇,共10章,比较全面、系统地介绍了矩阵的基本理论方法及其应用。第1章与第2章重点介线性空间与线性算子、内积空间与等积变换等,这部分内容既是线性代数知识的推广和深化,又是矩阵几何理论的基础,熟练掌握和深氮理解它们对后面内容的学习乃至将来正确处理实际问题有很大的作用。第3章至第5章主要介绍A矩阵与若尔当标准形,赋范线性空间与矩阵范数矩阵的积分运算及其应用。这些内容是矩阵理论研究矩阵计算及应用中不可缺少的工具和手段。以上5盘内容均为191年国家教育委员会工科研究生数学课程教学指导小组对“矩阵论“课程所制定的基本要求,故本书把它们放A上篇约为2~3学分(讲授36-54学时)。考虑到矩阵理论的完整性,系统性,又能反映最新进展同时为满足某些专业多学时教学的需,本书的下篇安有:第6章介绍广义逆矩阵及其应用;第7章介绍矩阵的因子分解;第8章介绍几类特殊阵,请如非负矩阵与正矩阵素矩阵与循环矩阵随机矩阵和双随机阵单调矩阵M矩阵与H矩阵,T矩阵与汉克尔矩阵等:第9章介绍矩阵的克罗内克积阿达马积与反(Fan)积:第10章介绍辛空间与辛矩阵,这部分内容反映学科的前沿,有着广阔的应用前景,这在同类教材中是独有的。本书每章精迭了一定数量的习题。考虑到矩阵论课程的理论性强概念比较抽象,且有独特的思方式和解题技巧,有些读者在矩阵论做这些习题时可能会感到比较困难,为使这部分读者更好地掌握这门课程的教学内容,我们特意提共一张光盘,其屮包含夲B各章习题详解和模拟考试闩测试题解答等,供渎者选用,月录中带新号的内容用于选学或自学本引入新概念时既重视几何理论,乂兼颇廈用背景或具体应用;既有系统忖,适全血阅读(多学时),又具有可分性,便于选读(少学时);既注重取材得了(涵盖多种特殊矩阵殊运算法则),乂能够面向前沿,反映最新进展(如♀空间、辛变换)。木书的编非浅人深,阅读木书只需貝备高等数学和线性代数的基本知识作者诚挚地慼谢能麗教授他仔细审阅了全部书稿,并提出∫不少有益的议。参与本书第10章编写「仁的还有工如云教投同时要感谢冯康数授注道柳研究员对第10章编写工作的指导和帮助木书可作为理科大学各专业研究生约学位课程教材,过可作为理科和师范类院校高华级本科牛的选修课教材,并可供有关专业的教师和工程技术人员参考由于著者水平有限,书中如有不妥乃至谬误之处,祈望读者批评指正编著者CONTENTS目录前言即中南‘4h自中‘4b日B‘目·4··自D■血·第1章线性空间上的线性算子■■■■昌郾■4■■L■■■■■司昌■■4.1线性空间…1..1线性空间的定义及基本性质…………….1.2层、维数与坐标…………………1.1.3线性子空间丬题1.l……………“…………………"…………"………………………………212线性算子及其矩阵,警中■■自■曾q■PP………241.2.1线柱空间上的线性算子242问构算与线性空间同妳272.3线性算子的矩阵表示29i.2.4线性算子的运算31.2.5线性变换与方阵……142.6线性变换的特征值问题…421.2.7炎性变换的不变子空间■·■司L■■↓■4·晶日■■↓晶晶■昌■■1·』4_d54习题].2……………………………………………………56第2章内积空间上的等积变换…32内空间14日+日◆号P·F日中P唱号72.1.1内积与欧几里得空间『會■會■會冒■日鲁■7■百■自日P中■會2.1.2西空间介绍昌■■血晶■昌■■■■■■晶口日昌■p习题2.l……………………………………………………………742.2等积变换及其矩阼bt+rv吾T■"■■■2.2.1正交变换与正交矩阵2.2.2两类常用的正交变换及其矩阵………M>矩阵论2.2.3酉变换与酉矩阵介绍■■■v■■如v如4a■_■■■1■■『卜;卜+』■■■晶画■■日■1自自自自自.2.4正交投影变换与正交投影矩阵………"…96习题2.2…………………………………………………………………:1912.3埃尔米特变换及其矩阵……………■仙■■會■『山中…1103对称变换与埃尔米特变换………………1039.2埃尔米特正定、半正定矩阵…………106矩阵不等式1092.3.4埃尔米特矩阵特征值的性质1112.3.5一般的复正定矩阵………,……,1l42.3.6正规矩阵平昏尋晋忄【十■昏引■昏卜↓山↓4『昏十;山血b■■昏◆曲冒■■啬雪■■詈■『■血T■會■■■115习题2.3…,………………………………·…"………t……117第3章矩阵与若尔当标准形■日■P:日日日··..··卓a:c吗3.1λ矩阵…………………………"……………3.1.1A矩阵的概念………………3.1.2矩阵在相抵下的标准形…………………………1223.1,3不变因子与初等因子………………………………]243.2若尔当标准■品■量Pφ十4T■『■冒■■■n■……………1363.2.1数字矩阵化为相似的若尔当标准形……………………1363.2.2若尔当标准形的应用s147凯莱哈密赖定理与最小多项式149「题3……;…s""·55第4章赋范线性空间与矩阵范数4.1赋范线性空问…""F"t"t"!*…"………1584.1.1向量的范数………………………l584.1,2向量范数的性质…165习题4.1………………………………■■■昌↓·4+十P咱甲■■■■卓命·自如1674,2矩阵的范数…1+■h4b······■·日■···中··.日日日日4■■晶4·◆旮■T■■日中:1684.2.1矩阵洹数的定义与性质…………………………………1684.2.2算了范数■P申P■曾■■■■脚自自4.2,3谱范数的性质和谱半径且7习题■自■◆t自『自即↓■↓■11794,3摄动分析与矩阵的条件数…………8(目录4.3.1病态方程组与病态矩阵………………………184.3.2矩阵的条件数…I8I4.3.3矩阵特征值的提动分析……▲■■罪ψ●ψ如d4dd↓山喜血↓山t…185习题4.3■··中·平鲁即唱會申噜4■冒■曾自P宁■唱■曾■■■■■■■■■■自■曾自■■罪自咖q司血自日自·■■罪■聊■暴■b■看■■■第5章矩阵分析及其应用……………………………………………………1925.1向量序列和炬阵序列的极限………41925.1.L向量序列的极限………中·『■■■■■■■■唱食p"n■p■1925,1,2矩阵序列的极限…1945.2矩阵级数与矩阵函数………………1985.2.1矩阵级数……95.22矩阵函数中中曹号■量■俨■會■■■■自■自■曲自昌■口■206函数矩阵的微分和积分……………65.3.1阵数矩阵对实变量的导数1···日日■日早+4『P■-日.命4■4自中自啁日血聊217532函数矩阵特殊的导数……………………….2215.3.3矩阵的全做分22653,4函数矩阵的积分吾4■自四日日■自自自自自1日日日品+幽国日日4早·血■·即2285.4矩阵微分方程……"…""""""ss……2295.41常系数齐次线性微分方程组的解………………,295.4.2常系数非齐次线性微分方程组的解……3654.3n阶常系数微分方程的解………………………….239习题5a·PDI中日号日吾目.日品↓中◆自■■当血▲日日日“导吾t…"…"244下篇第6章广义逆矩阵及其应用………………………"…!………2516.1矩阵的几种广义逆6.1,1广义逆矩阵的基本概念25]6.1.2减号近A◆·■·■■■■b■b■即■■■··◆…………2526.1.3自反减号邀A上■鲁■血■自■■25G6.1.4最小范数广义逖Am6.1.5最小乘广义逆A1……■■·自…2656,1.6加号逆A257
    2021-05-07下载
    积分:1
  • 傅里叶变换降噪
    对信号进行傅里叶变换,然后选择宽度为10,30,50的滤波器对信号进行滤波,对滤波效果进行比较
    2021-05-06下载
    积分:1
  • LabVIEW使用TCP/IP传输图像
    可以使用TCP/IP传输图像的代码,大家可以下载看看,当做一个模板,可以扩充~~
    2020-12-05下载
    积分:1
  • 卡尔曼滤波参数估计
    这是用MAtlab编程实现的卡尔曼滤波参数估计,能修改参数,满足各自的要求。
    2020-12-01下载
    积分:1
  • 三维点云数据的显示,并可以对三维模型进行旋转和平移等
    可以读取文本文档,将散乱的大量三维点云数据显示出来,并进行,平移旋转等。
    2020-12-03下载
    积分:1
  • 世界土壤数据库HSWD数据
    世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2).其中,中国地区数据源为全国第二次土地调查由南京土壤所所提供的1:1,000,000土壤数据。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。
    2020-11-28下载
    积分:1
  • MATLAB模拟MZM实现OOK和BPSK
    MATLAB模拟MZM实现OOK和BPSK,可修改为自己需要的高阶调制方式,内有产生的信号的图形(包含幅度和相位信息)和眼图
    2020-12-04下载
    积分:1
  • 基于FPGA的MP3音乐播放器设计
    课程设计做的音乐播放器,内置mif文件中存了3首歌曲,分别为《世上只有妈妈好》、《祝你生日快乐》、《两只老虎》。能够实现播放/暂停、上一首、下一首功能
    2020-12-06下载
    积分:1
  • 三维孔洞储层建模及其地震波场正演模拟
    三维孔洞储层建模及其地震波场正演模拟,理论讲解很透彻,分析思路清晰1290地球物理学进展26卷预测结果,即从具有确定性资料的控制点(如井点)解释.同时,利用该过程中产生的6冂井的时深关出发,推测出点间(如井间)确定的、唯一的储层参系,用三角剖分网格建立了速度模型并经过井点校数随机模拟是从一个随机函数z(v)中抽取多个可正,实现了对工区构造框架的时深转换通过以波阻能实现,即人工合成反映Z()空间分布的可供选择抗为协变量的孔隙度属性模拟,借助于三维可视化的、等概率的高分辨率实现技术,我们可以大致看到孔洞储集体的形态、分布、对于该工区来说,三维地震资料分辨率较高,对规模及连通性(图1).根据孔隙度发育情况,我们将孔洞储层已经有一定的反映(常表现为低频、不连续强储层分为孔洞欠发育(致密)、孔洞较发育(较致密)振幅反射).通过岩石物理分析又发现孔洞储层低速、和孔洞发育(较疏松)三种类型并分别设计了各自相低密,常规波阻抗反演能够刈其几何形态、空间接触应的弹性参数,同时以模拟出的孔洞形态约束弹性关系定量表征.因此本文将波阻抗数据体作为协变波正演模拟时孔洞体的空间分布量地震属性纵向等值法),采用确定性的协克里金2波动方程正演模拟原理插值算法,对孔洞储层的物性参数进行了三维建模反演所起到的作用,是通过归一化的测井曲线对碳酸盐岩岩溶风化壳孔洞型油气藏属于一种典原始地震数据进行校正,使数据在空间上得到了有型的、复杂的非均质范畴,可以视为由准均匀介质中效的平衡,从而使孔洞反映的更清楚;二是在地质建呈不规则分布的、大小和形状各异的低速体共同组模过程中通过宏观控制,充分利用空间变量的相关成的非层状储集体.在地震剖面上看到的储集体的性,克服低频模型的不足提高属性模拟的分辨率波应是这些低速体的散射(绕射)波.若利用常规波2【V动方程正演模拟方法所使用的均匀介质中的声波方N()程或弹性波方程,难以得到具有复杂非均匀性的孔cline洞型油气藏的地震波场响应2.因此,本文采用非均匀横向各向同性弹性介质中的弹性波波动方程进l()行正演模拟计算,取z轴为垂直对称轴,它可以表示为如下的一阶方程组:a0awta(λ+2naU)+AW(1)7(1(λ1+21)2+λax图1地质模型孔洞储集体俯视图Fig 1 Top view of the cavity reservoiμ(ain geological model其中:(U(x,z,t),W(x,z,t)是速度向量;B(x,z)是密度ρ=g(x,z)的倒数,或者叫疏度;r建模过程中最大的难点是求取准确的速度场,τ(x,z,t),za=x(x,z;t),n=rn(x,z,t)是应木文首先收集整理了工区内6口探井、评价井的钻力张量.A,P/和A1,p分别为水平和垂直方向上井分层数据及多种测井曲线(电阻率、声波时差、密的拉梅系数;为一新的弹性常数可见,在横向各度、自然伽玛等),对其进行了归一化和环境校正,并向同性弹性介质中,独立的弹性常数有五个,它们是制作了合成记录.通过与井旁地震道对比准确标定密度、在垂直方向上的纵、横波速度及纵、横波的各了前中生界侵蚀顶面(15)石炭系双峰灰岩顶面向异性系数,即:(T5。),中下奥陶统顶面(T7)、下奥陶统蓬莱坝组顶面(T7),它们都是区域性的波峰反射在此基础+2uL, Vsi-A pL上采用25m*25m测线密度对该区块6.25km2的3U地震数据体T5°、T5、T74、T78层位进行了精细√λ1+2,CSV闵小刚,等:三维孔洞储层建模其地震波场演模拟1291在具体的有限差分解法上,除了规则网格外,非均匀介质模型的弹性波动方程正演模拟特别是种较为先进的交错网格(图2)最早由 madariaga提当每一个波长中的网格点数多于10个时, Levander出, Virtex在模拟各向同性介质屮SH波和P(1988)2的结果显示,网格色散与网格各向异性均Sⅴ波时也使用了这种差分网格,其精度为o(△2十可忽略不计△x2),在不增加计算工作量和存储容间的前提下,假设U,W分别为介质在x,z两个方向上的速和常规差分网格相比局部精度提高了4倍,且收敛度分量的离散量,R,T,H分别为rxr=和τx的离速度也较快. Levander2又将这种差分网格的精度散量,Lo,M,L1,M1和M2分别为y,kM,A⊥?P1和提高到o(△t2+△x). Crase2则发展了精度可达任g的离散量在(1)式中,各导数项均用中心差分来意阶的高阶交错网格法,但其计算量和内存要求比代替,在如图2所示的一个交错网格中,U,B在节低阶有限差分法大幅度增加.本文使用的是 Virieux点1处计算;W,B在节点2处计算;R,T,M,L,(1986)1的交错网格差分公式,其差分精度为和M1,L1在节点3处计算;H,M2在节点4处计算(△2+△x2), Ikelle l t和 Yung$ K(199)21说这样()式离散为4明该算法可以糈确、稳定地应用于任总复杂变化的=U+B,(R年,-R…)十B,(I1+-H),wH,n-v++B++△(r}一rn)+By2(T+-+),ry=对++(n+2M4)+,△m+-RW(2)+T+,;+(L1+2M1)△tW+U2)+M2△t鲁←z以将震源函数直接赋在rx和n的节点上来模拟震源,即Soure,t)=R(t)t_(source_x, soure_x, t)=R(t.此外,在震源没有激发之前地下介质内部所质点都是静止的,包括质点振动速度为零和所受应力为零.因此,初始条件为图2一个交错树格Fig. 2 A st0,r(x,z,t)=0(t≤0)(3)对于自山表面边界条件,本文采用了模型空间其中,上标k为时间t的离散量,下标i,分别为x的上部加空气的条件,然后再采用吸收边界条件把和z的离散量.△,△x,△z分别为t,x,z的步长空气上边界的弹性波吸收掉,对于空气的下界面,则鉴于 Ricker子波对地震波的分辨率较其它子作正常的分界面来认识,从而获得和实际应用中波函数高,因此,震源选用 Ricker子波,其形式为所采用的地表放炮、地表接收达到一致的效果.R(t)=[1-2Lmf(t-to)] Jexp[-(rf(E to))2]有限差分法在求解波动方程时,会产生不期望式中f表示子波的主频,t为子波持续时间,t为f的数值频散或称网格频散,导致数值模拟结果分辨的函数,在模拟地下激发的地震波时,有限差分交错辛降低2所谓数值频散实质上是一种因离散化求网格中的正应力x和x=是在同一节点上赋值的,解波动方程而产生的伪波动,这种频散既不同于波而vr和vn在节点处的数值并没有参与计算,因此可动方程本身引起的频散,也不同于因波传播的速度1292地球物理学进展26卷频率和角度变化而引起的频散,它是有限差分方法果我们在这里仅分为三种类型:孔涧欠发育(致求解波动方程时所固有的本质特征,无法避免.为了密)、孔洞较发育(较致密)和孔洞发育〔较疏松).消除这种数值频散,前人进行了大量研究,他们的结论是基木一致的,即为了消除数值频散,在使用二阶表1地层框架内各层物性参数有限差分方法时,每个功率对应的波长至少必须使Table I The properties ot each layer用11个网格点,面四阶有限差分则可用二阶差分网in stratigraphie framewor格点数的一半.木文采用的稳定性条件,即计算稳定p(nu/s) v(m/s) (kg/m3)的离散参数区域为151:r4G界面2500三叠系)以Lmd2m≤1(2m-1)fT50界面下石炭系顶)~T46l730≤Ld2m≤T56界面(2m-1)!(巴楚组顶)~T5023102350其中,T74界囿(下奥陶系顶)~T56±8002470T78界面(蓬芠坝组颠)灬T7460002650界面以3702此外,在做波动方程的模型计算时,由于只能在对于试验工区的每条线,其长度均为1625m个有限区域进行,而弹性波在其计算边界上能量为了侏证该区域内均为满叠、孔洞的绕射波收敛以衰诚并不为零,从而产生很强的边界反射,这是模型及边界吸收较为干净,我们在模型的左边延长了计算时所不希望的,需要做人工吸收戌衰减处理,计1200m,右边延长了1575m(延长部分的地层接触算吸收边界的方法有许多种,一般情况下网格周围系并不代表真实情况),即模型总长度为1、4km,的耗散采用质点的速度和应力值乘上一个小于1深度范围为4000~6500m每条线均采用了同样的的因子来平滑的衰减;另种可能性是在网格周围观测系统,具体为:采用零相位对称雷克子波作为震使用低Q值来实现吸收作用,但是后者的吸收效果源(主频40玎z),单边放炮(共20炮,每炮128个检不如前者的吸收效果好,因此本文采用的是第一种波器接收)炮间距160m,检波器间距20m,8次叠方法,具体实珧时釆用了〔 eran等的吸收边界条加,最小偏移距0m,最大偏移距2540m,记录长件实现边界吸收1.6s,Δt=2ms,第一炮的坐标位置为(-1200,0)exp[-a2(I-i)2],1≤i≤1.基于差分稳定条件,取模型中最小介质速度2500m/s其中,I为给定的吸收边界带总节点数;i为吸收边为参考,得到的计算参数为:网格剖分间隔3m界内的节点编号;a为衰减系数,其值的选定与1的3m,时间延拓步长为0.27ms,每个波长(62.5m)大小密切相关,且对吸收效果的影响很大本文中Ⅰ内有20.8个网格.我们一共对33条线进行了正演取为40(即围绕计算区域,再向外设置宽度为40个模拟,图3展示了较为典型的 inline2585线(位于研网格的条形吸收区域)a=0.305/40,i取从0~40究工区的中心部位,地层接触关系以及孔洞体的分节点号.在条形吸收区域中的每个网格结点处,对全布相对比较复杂),从中可以大致看出二维正演模拟部的5个波场量(U,W,R,T,H),在每计算一个时的普遍情况与孔洞体波场响应特征的一般规律问步长后,都做少量的波场减表2展示∫该条线上各孔洞体的几何及物性参3模型计算数,其中④号属于欠发育(充填致密物)类型,①③⑥号属于较发育(充填较致密物)类型,②⑤号属于发在正演之前,我们统计了工区的速度、密度资育(充填较疏松物)类型.此外,建模过程中,我们还料,为了简化模型,并使得孔洞体的地震响应特征更考虑了线与线之间地层起伏渐变、孔洞大小渐变孔具有针对性,我们采用了背景为常速介质、蜜度参数洞物性参数渐变的过程,即所有建模因素都渐变由( arner公式计算的思路(表1).对于孔洞储集的而不是突变,最终保证了三维地震数据体的连体,根据钴井揭示和前面提到的孔隙度属性模拟结续性4期闵小刚,等;三维孔洞储层建模及其地震波场正演模拟1293表2各孔洞储集体的几何及其物性参数最大振幅,且绕射曲率与反射曲率相同,表明二者具Table 2 The geometry and propcrty parameters有不同的传播速度;每个绕射波可分为左右、上下f each cavity reservoir正、反向绕射分支,正向绕射分攴的相位与反射P孔润体尚度宽度vVP波相同,反向绕射分支的相位反转180°,与反射P(m)(m)(m/s)(m/s)(kg/m3)充填物屮心距界面(m)波的相反17396500029002503较致密105弹性波正演模拟生成的炮域合成记录被导人10113480027822470较疏松6FOCUS软件进行常规处理,包括速度谱拾取、动82784500029002500较致密85校、切除、增益、滤波、叠加、偏移和变面积、变密度显①575520030222530致密示等.由于在观测系统中只设计了8次覆盖,为了增⑤18115480027822470较疏松104加速度谱拾取精度,本文采用了由相邻的7个CDP2714850029002500较致密86道集混合构成一个超道集的办法,隔10个CDP拾图4是该模型在590ms时的波场快照,其波场取一个速度文件,并在拾取前先作常规NMO校正清晰,网格频散小,边界吸收较干净这表明,在求解切除,使得原始道集记录能量更强、信噪比史高二维弹性波动方程时,将差分解法和交错网格技术图5、图6分别是TK610井、TK623井所在位置处相结合,通过较好地使用吸收边界和稳定性条件可CDP道集记录及其速度谱,从图中可见各个反射界以显著削弱数值频散,有效地提扃计算精度.同时面的同相轴清晰可辨,对应的能量团集中,而在合成在保证一定的精度前提下,可以采用铰大的空间网记录上T7界面下孔洞所在位置处都有一明显的格间距,提高计算效率.从图巾还可看出,孔洞绕射同相轴,能量团也比较集中,由于TK610升比波和反射波在绕射点处相切,在切点处绕射波具有TK623井孔洞储集体更为发育(尽管二者振幅相1200-80004008001200160020002400280040004505500图3主测线2585地质模型Fig 3 Geclcgical model ol inline258-12004004008001200160045000.10.3图4主测线2585在590ms时波场快照Fig. Snapshot of wave field at 590ms in inlinc25851294地球物理学进展26卷Sg224-230CDP49 SE QNO250030003500400045000.240.60.60.80.8TE1.01. 01.21.2141.4图5TK610井所在位置处CDP道集记录及其速度谱ig. 5 The CDP gather and velocity spectrum at well TK610Sgl58-1640.2ONO250030003500400045000.0.40.60.60.8081.0:1.01212623(2565图6TK623井所在位置处CDP道集记录及共速度谱Fig 6 The CDP gather and velocity spectrum at well TK623当,在地质模型设计时均认为是充填较疏松物,但相消),使得T7界面断断续续,并在该界面下出现TK610井比TK623井在目的层段的厚度要大,横些“短反射”通过仔细分析,我们发现“短反射”中向展布范围也更宽测试产能更高),在合成记录上较强者出现的时间,与孔洞位置相对应.从该模型的孔洞对应的同相轴振幅更强、波形更连续,速度谱上偏移剖面上(图b)可以看到,所有的孔洞体均得到能量团也更强、更集中比铰好的偏移成像,并表现为负正负三个相位的图7是处理完后的叠加和偏移剖面.从叠加剖波形.但鉴于反射波地震勘探的纵向分辨率(大于面上(图a)可以比较清楚的看到孔洞体顶、底的两1/4波长),所有能检测出的孔洞或孔洞组合在叠加组强反射,但是二者之间出现具有绕射特征的弱波剖面上都叠合在T74界面下第一个波峰轴上,在偏代替了成层的背景,这些绕射波的相互下涉(相长、移剖而上都体现在T7界面下第一个黑椭圆体上,4期闵小刚,等:三维孔洞储层建模及其地震波场正演模拟1295601001401802202603003401001401802202603003400.00.00.20.2040.40.60.60.81014露9.926c+089.926e1081022e+091022e+09图?主测线2585对应的叠加剖而(a)和偏移剖面(b)Fig. 7 The stacking section (a) and migration section (b) of inline2585至」其下的“串珠”是孔洞的假象(孔洞组合与围岩(b)之间的多次波及绕射波经偏移归位后形成较强短反L2560L2580L2600射).由于T74界面反射波与沿纵横向有一定分布的孔洞(比较明显的是①、⑤号)的绕射波叠加,使得30001300040孔洞所在位置处T74界面反射波能量变弱,而孔洞底部与下覆围岩之间的正极性反射由于受T7界200600面反射波的负值性续至波叠加,也变得较弱.此外,B40080在构造高点上(④⑥号孔洞体所在位置,④号更为明显),由于孔洞引起的绕射与隆起引起的回转波的相6003600100互丁涉,T56和T7界面不连续,甚至在其间出现空白反射,而实际资料也有这种情况.这说明,对于塔3800800200和油田碳酸盐岩孔洞储集体这类特殊的油气储层来400040001400400说,在解释时遇到层位问断时,不能轻易地开断层,而应该综合考虑构造、孔洞绕射等地震波场特征.这图8联络测线2795实际剖面(a)和正演剖面(b)对比也是塔河油出勘探开发实践中发现“表层弱反射、内Fig 8 Comparison of the actual section (a) and幕强反射”地震特征对应有利储层的一个佐证forward modeling section (b)in crossline2795依据以上思路与工作流程,我们得到了33条沿主测线方向的二维偏移剖面,在并成三维体之前,为而正演模拟釆取的是8次叠加、道间距10m),正演了尽量消除线与线之问因地层起伏造成的不闭合,剖面较好的反映了实际情况.这不仅体现在层位的我们采取先把33条线的速度文件并成三维体,整体形态、分布比较相似(由于速度取了平均,各层的厚平滑后两用每条线对应的、平滑后的速度对其原始度不一致,但不影响我们的主要的,即对孔洞体地共中心点数据进行动校、叠加、偏移的办法,得到33震响应特征的分析),更重要的是,我们所设计的孔条新的二维偏移剖面,再并成一新的三维体,此外,泂体,其位置、形状规模、振幅强弱均与实际地震资由于正演模拟数据体线间距为50m,道间距为料具有相当好的对应关系,这表明我们在止演模拟10m,其空间采样率比实际资料低,本文编制了相和处理时的设计思想和参数选取原则是合理的,这应的算法在频率域对其进行插值,使线间距加密到结果也为我们进行后续工作提供了比较好的数据25m图8是联络测线2795在时间域的实际剖面源由于实质上是2.5维,不是基于面元的真三维,(a)和正演剖面(b)对比,排除二者在采集时的一些所以沿联络测线的剖面上同相轴有抖动现象,这是差异(如实际三维采集资料为24次叠加道间距25m,不可避免的)1296地球物理学进展26卷4结论与建议2]谢桂生,刘洪,赵连功,伪谱法地震波正演模拟的多线程并行计算[冂.地球物理学进展,2005,20(1);17~23.本文从三维角度,建立了与实际资料比较吻合Xie G S, Liu H, Zhao L G. Parallel Algorit hm based on the的孔洞储层模型,并进行了弹性波正演模拟,总结了multithread Technique for pseudospectal modeling of seismic地震响应规律,主要结论如下:wave[J]. Progress in Geophysics(in Chinese), 2005, 20(1)1)结合地震资料建立储层地质模型能够有效[3]刘财,张智,邯志刚,等.线性粘弹体屮地震渡场伪谱法模拟地降低储层模型的不确定性,提高建模精度.同时利技术[门].地球物理学进展。:005,20(3),640~644,用协克里金技术,用波阻抗反演的确定性信息约束Liu C, Zhang Z, Shao Z G, et aL. Pseudo-spectral forward储层的平面非均质性,可以实现孔隙度属性的确定modeling nf seismic wave in linear viscoelasic solid [J]P1性建模),2005,20(3):640~644.4」张智,刘财,邵志刚,伪谱法在常Q粘弹介质地震彼场模拟(2)在求解二维弹性波动方程时,将差分解法和中的应用效果[].地球物理学进展,2005,20(4):945交错网格技术相结合,通过较好地使用吸收边界和949,稳定性条件可以显著削弱数值频散,有效地提高计Zhang Z, Liu C, Shao G. The application of pseudo-spectral算精度.同时,在保证一定的精度前提下,可以采用forward modeling of seismic wave field in constant Q较大的空间网格间距,提高计算效率该方法具有广viscoelastic medium [J]. Progress in Geophysics, 2005,20(4)945~949泛的适用性5]盖良国,马在出,曹景忠,等.一阶弹性波方程交错网格高阶(3)孔洞储集体在偏移剖面上表现为负-正-负差分解法[冂].地球物理学报,200,43(3):411-~419三个相位的波形,但只能确定奥陶系风化面下第Dong LG, Maz T, Cao j Z, et al. A staggered-grid high个负相位是孔洞的发育位置,其下的“串珠”是孔洞order difference method of one-order elastic wave equation]的很象.风化面反射波与沿纵横向有一定分布的孔Chinese J. Geophys. (in Chinese),2000,43(3):411-419洞体的绕射波叠加,使得孔洞所在位置处风化面反[6]董艮国,马在田,曹景忠,一阶弹性波方程交错网格高阶差分解法稳定性研究[门].地球物理学报,200,43(6):856~射能量变弱,而孔洞底部与下覆闱岩之间的正极性反射由于受风化面透射波的负值性续至波叠加,也Dong L G, Ma Z T, Cao J Z. a study on stability of the变得较弱.该结论对于实际地震资料处理、解释以及staggcred-grid high-order difference method of first-order储层预测烃类检测具有普遍的指导意义elastic wave equation. Chinese J. Gcophys. in Chinese)2000。43(6);856~864本文不足之处主要有三点「7]萤良国.复杂地表条件下地震波传播数值模找1.勘探地球(1)在三维孔隙度建模时采用的是常规阻抗信物理进展,2005,28(3);187~194息(约束稀坑脉冲反演),其纵向分辨率不够(只能分Dong L G. Numerical simulation of seismic wave propagation辨1/4波长以上的孔洞储集体),在后续工作中将尝under complex near surface conditions [J]. Progress in试使用地质统计学反演的阻抗体来约束建模以大幅Exploration Geophysics(in Chinese), 2005, 28(3):187--194提高纵向分辨能力[8奚先,姚姚,二维随机介质及波动方程正演模拟[.石油地球物理劫探,2001,36(5):546-552(2)在弹性波正演模拟时采用的是2.5维思想XiX, Yao Y. 2D random media and wavc cquation forward口前正在研制全三维算法有望更逼真的还原孔洞储modeling [J]. Oil Geophysical Prospecting in Chinese集体的真实地下情况001,35(5);546~5523)考虑到缝的各向异性更为复杂,本文尚未涉9]奚先,姚姚,二维粘弹性随机介质中的波场特征分析[刀地及,对于碳酸盐岩中这类油气运移的重要通道,将在球物埋学进展,2004,19(3):608~615今后的工作中进一步研究Xi x, Yao Y. The analysis of the wave field characteristics in2-D viscoelastic random medium LJ. Progress in Geophysics参考文献( References):hinese),2004,19(3):608~[10]奚先,姚姚,二维横各向同性弹性随机介质中的波场特征1]刘文岭.大庆宋芳屯油田芳2区块地震与地质资料综合储层J.地球物理学进展,2004,19(4):924~932地质建模研究(博土论文儿D1.北京:中国地质大学,2002Xi x, Yao Y. The wave field characteristics of 2-DLiu W I. A Study on Reservoir Geological Modeling withclo].ESeismic and Well-log Data in Fang 2 Area of DaqingGeophysics(in Chinese), 2004,19(4):924-932ongfangtun Oil Field (doctor dissertation)(in Chi[111吴永国,贺振华,黄德济.串珠状溶涧模型介质波动方程正Beijing: CUG, 2002.演与偏移[.地球物理学进展,2008,23(2);539~5444期闵小刚,等:三维孔洞储层建模及其地震波场正演模拟1297Wu Y G, He Z H, Huang d J. Wave equation forward[19]肖玉茹,何峰煜,孙义梅,等,古洞穴型碳酸盐岩储层特征modeling and migration for heads-shaped corroded cave model研究一以塔河油田奥陶系古洞穴为例匚门。石油与天然气地EJ]. Progress in Geophysics(in Chinese), 2008, 23(2): 539质,200324(1):71~80.Xiao YR, He f Y, Sun Y M, et al. Reservoir charactetistics12]股文,印兴耀,吴国忧.高特度频率域弹性波方程有限差分of paleocave carhonates-a casc study of Ordovician paleocave方法及波场模拟[」.地球物理学报,2006,49(2):561in tahe oilfield, Tarim basin UJ]. Oil Gas Geology(inChinese),2003:24(1):71-80Yinw, YinXi,WuGC. The method of finite difference of[20]姚蟋,唐文榜.深层碳酸盐岩岩溶风化壳洞缝型油气藏可检high precision elastic wave equations in the frequcncy domain测性的理论研究[门.石油地球物理勘探,2003,38(6):623and wave-field simulation [J. Chinese J, Geophys.629Chinese),2006,49(2):561~568.Yao Y, Tang W B. Theoretical study of detectable cavern[13]马贵,土尚旭,宋建勇.频率域波动方程正演中的多网格Fractured reservoir in weathered Karst of dccp carbonatite迭代箅法[门].石油地球物理勘探,2010,45(1):15[J]. Oil Geophysical Prospecting(in Chinese), 2003,38(6):Ma ZG, Wang S X. Sun J Y. Multigrid iterative algorithm in623~629,domain wave equation forward modeling [J]. Oil [21] Levander A R. Fourth-order finite difference P-SvGeophysical Prospecting(in Chinese ) 2010, 45(1): 1-5seismograms []. Geophysics, 1988, 53(11): 25-36.[14]张金海,王卫民,赵连锋,等.傅里叶有限差分法三维波动[22] Crase e. Iligh- order( space and timc) finite-difference方程正演模拟[.地球物理学报,2007,50(6):1854A, In: 60th SEG Annual1862C].1990:987~991.Zhang j H, Wang W M, Zhao L F, et aL. Modeling 3-D [23] IkelleL T, Yung SK, Daube F. 2-D random media withscalar waves using the Fourier finite-difference method.ellipsoidal autocorrelation function [J]. Geophysics, 199350(6):1854[24]奚先.随机介质模型的构造及其波场模拟(博土论文)[D][15] Qin Z, Lt武汉:中国地质mproved NPML absorbing boundary condition in elastic waveXix. Construction and scismic wave field modeling ofmodeling [J]. Applied Geophysics, 2009. 6(2): 113-121random medium model doctor dissertation ) in Chinese)[16][D].Wwave equation [J. Geophysics, 1986, 51(1): 54-61[25]吴国忱,王华忠.波场模拟中的数值频散分析与校正策略[17] Virieux J. P-Sv wave propagation in heterogeneous mediaLJ.地球物理学进展,2005,20(1):58-65velocity-strcss finite-difference methud LJ]. GeophysicsWu GC, Wang H Z. Analysis of numerical dispersion in1986,V51;889~901.wave-field simulation [J]. Progress in GreaphysiEs ( in18] Igel H, Riollet B. Mora P. Accuracy of staggered 3-D finiteChinese),2005,20(1):58~65difference grids for anisotropie wave propagation [J]. 62th [26] Cerjan C, Kosloff D, Kosloff R, et al. A nonreflectingAnn, Internat, Mtg, Soc. ExpL. Geophys, Expboundary condition for discrete acoustic and elastic- wav1992,1244~1246.equation []. Gcophysics, 1985, 50(4): 705-708.
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载