登录
首页 » Others » 用Qt写的PID仿真程序

用Qt写的PID仿真程序

于 2020-12-05 发布
0 193
下载积分: 1 下载次数: 1

代码说明:

使用Qt写的PID仿真程序控制仪表与计算机控制装置作业

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • AD9361_SPI控制(无代码,只是个总结)
    本人学习AD9361的阶段性总结。详细介绍了如何通过SPI对AD9361进行配置。verilog代码已经完成。如果需要可以加qq互相交流。(无代码,只是一个总结)
    2020-11-01下载
    积分:1
  • ar9344 硬件原理图,参考pcb文件
    ar9344官方硬件参考设计, 原理图和PCB图源文件, 包括千兆和百兆网口
    2020-12-06下载
    积分:1
  • 多传感器融合—DS理论的序代码
    【实例简介】多传感器融合中DS证据理论的实现代码,简单好用,容易看懂,且可运行
    2021-11-12 00:36:06下载
    积分:1
  • 基于MATLAB的MEMS表面形貌重构
    分析获取的干涉图,熟练掌握MATLAB的操作,了解还原表面形貌的基本算法,编写适合的算法仿真出微结构表面形貌。技术要求:(1)会分析所获取的微结构表面形貌干涉图;(2)熟练掌握MATLAB的操作;(3)熟悉处理干涉图的相应算法;(4)仿真出微结构的表面形貌。
    2020-12-03下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • LTE协议_中文版36.211-214
    LTE36.211-214中文版的协议,与大家共享
    2020-12-11下载
    积分:1
  • 单片机可控硅斩波调压灯光控制
    单片机可控硅斩波调压灯光亮度控制,通过0-10V信号源输入采样,实现输出电压0-220V连续变化。输出电压十分稳定,无闪光现象。
    2020-12-04下载
    积分:1
  • GDAL读取tiff图像,需要配置GDAL库
    GDAL读取tiff图像,需要配置GDAL库。GDAL的基本用法。
    2021-05-06下载
    积分:1
  • labview FFT变换(频域分析).vi
    labview fft分析
    2021-05-06下载
    积分:1
  • 果蝇优化算法源代码
    内部包括FOA源码,m函数以及测试函数的封装M函数,将文件保存在同一目录,运行FOA.M即可,可以更改测试函数的m程序,对不同函数进行测试。
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 105559会员总数
  • 1今日下载