登录
首页 » Others » 基于AD9910的波形发生器

基于AD9910的波形发生器

于 2020-12-09 发布
0 266
下载积分: 1 下载次数: 2

代码说明:

基于AD9910的波形发生器:(1)产生频率范围:1Hz - 400MHz 的正弦波(2)产生幅度范围:1mV - 650mV 的正弦波(初始化后为:500mV)(3)产生上下限频率、频率步进(单位:Hz)、步进时间间隔(单位:us;输入范围:1-262us)可调的扫频波(4)利用 RAM 调制模式产生方波:采样时间间隔为 4*(1~65536)ns

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 用FFT对信号做频谱分析
    用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。
    2020-12-03下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • Dialog下创建 MFC OpenGL子窗口
    在dialog模式下,创建 MFC OpenGL子窗口,非SDI MDI
    2020-12-02下载
    积分:1
  • emWin使用手册,内含英文版(V5.32)和中文版(V5.12)
    本手册介绍如何安装、配置和使用emWin,手册说明了软件的内部结构和emWin提供的所有功能(应用程序接口或API)。
    2021-05-06下载
    积分:1
  • 方波,三角波,正弦波信号发生器设计报告
    信号发生器,包括方波产生电路,三角波产生电路,正弦波产生电路,仿真图,仿真数据均包含其中。
    2020-12-10下载
    积分:1
  • 地震资料正演软件
    地震正演软件!
    2020-06-30下载
    积分:1
  • python100道面试及解答()全部答案 pycharm 测试过 py3环境)
    python面试题100道答案全部 一般的只写了30个答案题目大概有1、一行代码实现1--100之和2、如何在一个函数内部修改全局变量利用global 修改全局变量3、列出5个python标准库os:提供了不少与操作系统相关联的函数sys: 通常用于命令行参数re: 正则匹配math: 数学运算datetime:处理日期时间
    2020-12-11下载
    积分:1
  • 正交信号:复数,并不复杂!(原版和翻译、基础讲解)
    一份讲稿,图文并茂,语言生动诙谐,通俗易懂,从介绍复数的表示,到欧拉公式的数学模型,引出为什么用复数表示实信号,通读全文,让一个初学者彻底理解在数字通信系统中为什么使用正交信号,正交信号又是如何节省带宽的,绝对实用!
    2020-12-11下载
    积分:1
  • EMD实现的MATLAB代码
    对于正在开始研究EMD进行信号处理的朋友有帮助,里面有EMD的源码,可以直接在MATLAB实验。
    2020-07-03下载
    积分:1
  • PC-Lint 9.0L破解修正版
    PC-Lint 9.0L破解修正版,内附安装说明,可直接安装使用。WIN10 32、64位均正常使用。C/C++编译神器,可嵌入VS、Source Insight、Keil等等IDE中。对C/C++代码中的错误、警告甚至可优化语句给出提示,功能强大。
    2020-12-12下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载