登录
首页 » Others » 静态网页作品-精美个人主页源代码

静态网页作品-精美个人主页源代码

于 2020-12-10 发布
0 214
下载积分: 1 下载次数: 1

代码说明:

针对很多人为了交作业在网上找静态网页作业,帮一个学生做的个人网页,经过美化修改,第一次发出来供初学者学习参考。包含6个独立页面,分别为首页index.html、about.html、flash.html、message.html、photo.html、riji.html关于本设计、flash欣赏、留言板、照片、日记包含css样式表文件,背景音乐……希望大家喜欢!

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Algorithm-Deep-reinforcement-learning-with-pytorch.zip
    Algorithm-Deep-reinforcement-learning-with-pytorch.zip,Pythorch实现DQN、AC、Acer、A2C、A3C、PG、DDPG、TRPO、PPO、SAC、TD3和….,算法是为计算机程序高效、彻底地完成任务而创建的一组详细的准则。
    2020-02-04下载
    积分:1
  • 基于实例和特征的迁移学习算法研究_戴文渊
    基于实例和特征的迁移学习算法研究上海交通大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。学位论文作者签名:日期:200年,月6日上海交通大学学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权上海交通大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文保密□,在年解密后适用本授权书。本学位论文属于不保密囝。(请在以上方框内打“√”)学位论文作者签名:指导教师签名:1日期:209年,月日日期,亻年,月,b日上海交通大学学位论文答辨决议书姓名戴文渊学号1060394所在学科计算机应用技术指导教师俞勇答辩2009年1月答辩地点逸夫科技楼311日期16日论文题目基于实例和特征的迁移学习算法研究投票表决结果:555(同意票数/实到委员数应到委员数)答辫结论:回通过口未通过评语和决议:戴文谢的论女对基家例和将而习年译入的研鉴该课题旨右桌砖传纹戒器动限劫布衣器导成眼刺张采明意和有吃作包提了-种基于泉例汪移羽法给生了aAB算回提3-种基特公汪移3方,3因片和受本键技术取場3很山敌果,流文点明方法新颖,结沉正别,反强着己孔家地推第术基础理和相关的去步知议,具级的去从季科研午W彩机答排刷凶滴蕤,回间趣正确浴拜委员会讨(孔记名拨票奉决),-敌其通过硕士怪沉辩被子召丽士209年1月16日职务姓名职称单位签名主席黄林鹏教授上海交通大学答委员辩翁惠玉副教授上海交通大学委委员薛贵荣副教授上海交通大学员会委员张冬茉副教授上海交通大学成员委员俞勇教授上海交通大学签|天姿号委员秘书韩定助理研究员上海交通大学中文摘要基于实例和特征的迁移学习算法研究摘要传统的机器学习假设训练数据与测试数据服从相同的数据分布。然而,在许多情况下,这种同分布假设并不满足。不满足同分布假设的情况往往发生在训练数捃过期,而标注新数据非常昂贵。于是,我们有有了大量的在不同分布下的过期训练数据。完全丢弃这些数据将会是非常浪费的。在这种情况下,迁移学习就变得非常重要了,因为迁移学习可以从现有的数据中迁移知识,用米帮助将米的学习迁移学习( Transfer Learning)的目标是将从个环境中学到的知识用来帮助新环境中的学习仼务。因此,迁移学习不会像传统忛器学习那样作同分布假设。在本文中,我们将会比较全面的回顾迁移学习的整个领域,并且介绍我们在迁移学习领域的近期研究成果。我们的工作可以分为两部分;基于实例的迁移学习和基于特征的迁移学习。我们将会展示出,基于实例的迁移学习有更强的知识迁移能力,而基于特征的迁移学习具有更广泛的知识迁移能力。这两种方法各有千秋。我们介绍了两种迁移学习方法,分别基于 boosting技术和特征翻译。这两种算法分别对应基于实例的迁移学习和基于特征的迁移学习。我们通过非常全面的实验来证明我们的方法在迁移学习时候能够很大幅度提高很多现有的学习算法,无论是近迁移还是远迁移关键词:迁移学习、实例、特征英文摘要Instance-based and Feature-based Transfer LearningABSTRACTTraditional machine learning techniques make a basic assumption that the training andtest data should be under the same distributions. However, in many cases, this identicaldistribution assumption docs not hold. The violation of thc assumption might happen whenthe training data are out of date, but new data are expensive to label. This leaves plenty oflabeled examples that are under a similar but different distribution which is a waste throwaway entirely. In this situation, transfer learning becomes important to take the role of leveraging these existing data knowledgeTransfer learning aims at using learned knowledge from one context to benefit fur-ther learning tasks in other contexts. Thus, transfer learning does not make the identical-distribution assumption as tractional machine learning algorithms. In this thesis, we broadreview the whole field of transfer learning and then introduce our recent work on transferlearning accordingly. Our work can be divided into two parts: instance-based transfer learning, and feature-based transfer learning. We will show that instance-based transfer learninghas better strength in knowledge transferring, while feature-based transfer learning is withmore gerWe present two transfer learning algorithms based on boosting technique and featuretranslation respectively. These two algorithms corresponds to instance-based and featurebased transfer learning. Our extensive experiments show that our algorithms can greatlyimprove several state-of-the-art algorithms in the situation of transfer learning, includingnear transfer and far transferKEY WORDS: Transfer Learning, Instance, Feature目录目录摘要ABSTRACT(英文摘要)第一章绪论第二章迁移学习领域的研究现状2.1多任务学习.22跨领域学习23不同数据分布下的学习24其他迁移学习问题25迁移学习的应用4555678第三章基于实例的迁移学习算法研究3.1基于 Boosting的迁移学习算法3.1.1基本思想.3.1.2问题定义103.1.3 TrAdaboost算法描述..123.2 TrAdaboost算法的理论分析.14321基本符号143.2.2辅助训练数据上的错误率...:.···153.2.3源训练数据上的错误率,,203.3实验分析:··..··:·.:·.:···:·:·:·:······:213.3.1数据描述..22332实验结果23第四章基于特征的迁移学习算法研究254.1基于特征翻译的迁移学习算法4.1.1翻译学习框架274.1.1.1问题定义····‘·274.1.1.2风险最小化框架.41.1.3模型估计.··2941.14翻译器o304,2实验分析324.2.1实验数据酯鲁鲁D着着·,,·,,音唐鲁帝着争324.2.2比较方法324.2.3实验结果··········:····:..:.::.:::33第五章总结与展望35参考文献致谢4·,个人简历、在学期间的研究成果及发表的论文春,音42插图插图1-1日常生活中的迁移学习例子3-1关于 TrAdaboost算法基木思想的一个直观的示例。3-2 TrAdaboost算法的机制123-3一个关于数据生成的示例223-4三种算法在 people vs places数据集上的效果243-5 TrAdaBoost算法在 people vs places数据集上的达代曲线244-1一个直观的例子,用来说明六中学习策略的异同264-2共同出现数据的例子:Flickr(http://www.flickrcom/)74-3在12个数据集上的平均错误率3444对于不同的入, TLRLSK在12个数据集上的平均错误率34表格表格3.120 Newsgroups数据分布的描述2232SRAA数据分布的描述2333当只有1%的源数据是训练数据时的分类错误率4.1文本辅助图像分类的数据描述3
    2021-05-06下载
    积分:1
  • 数字通信系统中信噪比与误码率关系的Matlab模拟
    通过Matlab模拟了随机产生的一定概率分布的信号序列,叠加高斯噪声后利用最大后验概率(MAP)检测到的误码率,做出BER~SNR曲线,并与理论计算得到的曲线进行比较,两者吻合
    2020-12-02下载
    积分:1
  • 数字图像处理(冈萨雷斯)书本全部完整原图片库
    共十二章,书上有的图片对应全部都有,都是原格式的高清的
    2021-05-06下载
    积分:1
  • glaux.h glaux.lib glaux.dll
    glaux.h glaux.lib glaux.dll用于OpenGL的配置及使用。
    2020-12-08下载
    积分:1
  • 基于云模型的花卉特征提取(matlab源代码)
    基于正态云模型,用正向正态云发生器和逆向正态云发生器来模拟花卉的部分特征提取。
    2020-11-29下载
    积分:1
  • NTC热敏电阻温度采集方案
    NTC温度采集方案,有详细的算法,包括一些程序,硬件设计等SUNPLUS用热敏电阻做朵用温度月录页系统概要系统说明热敏电阻器1.2.1电阻一温度关系1.3数值处理线性插值软件说明软件说明2档案构成2.3程序说明程序范例DEMO程序使件原理佟使用资源硬件使用资源说明参考文献SUNPLUS用热敏电阻做朵用温度修订记录版本日期编写及修订者编写及惨订说明初版错误校SUNPLUS用热敏电阻做朵用温度系统概要系统说明木应用例实现ⅳrC热敏电阻器对温度的测量。热敏电阻器把温度的变化转换为电阻阻值的变化,再应用相应的测量电路把阻佶的变化转换为电压的变化;SPMC75F2413A内建8路ADC可以把模拟的电压值转换为数字信号,对数值信号进行处理可以得到相应的温度值。热敏电阻器热敏电陧有电阻值随温度升高而升高的正温度系数(3 ositive Tcmpcraturc Coefficient简称PC)热敏电阻和电阻值随温度升高而降低的负温度系数( Negative TemperatureCoefficient简称NTC)热敏电阻。NT~热敏电阻器,是·种以过渡金属氧化物为主要原材料,采用电了陶瓷⊥艺制成的热敏半导体陶瓷组件ε这种组件的电阻值随温度升髙而降低,利用这一特性可制成测温、温度补偿和控温组件,又可以制成功率型组件,抑制电路的浪涌电流。电阻温度特性可以近似地用下式来表示:式中:Rη、R分别表示NTC在温度T(K)和额定额定温度T(K)卜的电阻值,单位2,T、T为温度,单位K(Ts(k)-273.15+T(℃))。B,称作B值,NTc热敏电阻特定的材料常数(Beta)。由于B值同样是随温度而变化的,因此NT热敏电阻的实际特性,只能粗略地用指数关系来描述,所以这种方法只能以一定的精度来描述额定温度或电阻值附近的有限的范围。但是在实际应用中,要求有比较精桷的R-T曲线。要用比较复杂的方法(例如用thesteinhart-Hart方程),或者用表格的形式来给定电阻/温度关系应用例选用NC热敏电阻器CwF2-502F3950,基于精确的R-T曲线,来对温度进行精确的测量。电阻一温度关系如表1-1所示,NC热敏电阻器CwE2-502F3950各温度点的电阻值,即电阻一温度关系表。从提供的电阻一温度关系表中可以看出NTC热敏电阳器CWE2-502E3950的测温范围为[-55℃,125℃],其电阻值的变化范围为[25006292,242.6492]。表1-1电阻一温度关系衣温度℃电阻值Ω温度℃电阻值Q温度℃电阻值Q55250062542374045322523952213575120241219175C4918158018171895-471626844615393345l∠56384∠1377534313029342123231-4111655CSUNPLUS用热敏电阻做朵用温度4010232391042613898621.793295.53688267.43583521.83479043.93374819.23270833.93167074.730635292960184.6-2857030.22754054.72651247.9-25486002446101.6234374422415192139418.82037435.9-1935563.51833795-1732124.463C545.829053.827643.3-1326309.525047.91123854.2-1022724,621655.320642.719683.618774.917913.6417097.116332.915588.4111891.5014230113601.913005.412438.7l1900.111388.210901.310438.39997.74578.41109181113799128436.83133091.73147762.787449.16167150.C4176864.7592.4196332.49206C34.32215847.31225620.89235404,53245197.72255000264810.9274630.014456.93294291.283C4132.69313980.83323835.383696.03343562.193434.53194.1383C81.22392972.92402869412769.24422673.47432581.5442493.17452408.3462326.76472248.38482173.04492100.6502032511963.92521899.441837.4541777,6已1720.2561664.85571611.541560.2591510.746C1463.08611417,14621372.87631330.18641289.C21249.321211.03671174.C91138.44691104.04701070.83711C38.78721007.8273977.9374949,0675921.1776894.22868.1878843.027980795.1781772.4382750.4483729.1784708.685688.786669.4487650.88632.76SUNPLUS用热敏电阻做朵用温度89615.39C91582.0292566.179550.8194535.9495521.5396507.5797∠94.0598480.9499468.23100453.301443.9710243210321.15104410.26105399.69106389.4407379.5103369.85109360.48101,411112.57112334.01325.69114317.62115309.7716302.16117294.76118287.5719280.59120273.8121267.21122260.8123254.512L248.52125242.64数值处理通过表1-1电阻一温度关系表可以很直观的看到电阻的变化范围从242.649到2500629,在-55℃的时候其表现出的电阻值是125℃时所表现的电阻值的1030倍,这幺大的变化范围也为ADC测量带来了困难。测量电路如图1-1所示。如图1-1测量电路如上图所示NTC热敏电阻Rⅴ和测量电阻Rm(精密电阻)组成一个简单的串联分压电路,参考电压VCC Ref经过分压可以得到一个电压值随着温度值变化而变化的数值,这个电压的大小将反映出NTC电阻的人小,从而也就是相应温度值的反映。通过欧姆定律可以得到输出电压值Vadc和NTc电阻值的一个关系表达式:vadVre上+Rm/(Rv+Rm)那幺接下来的数据处理将基于式(1)展开:sPMC75F2413A的ADC为10-Bit的精度,其参考电SUNPLUS用热敏电阻做朵用温度压为5V,因此这里可以选择Vre£=5V。各温度点对应的ADC转换后的数字量可以计算。Dadc = 1024*Adc/5V(2)式(1)、(2)结合可以得到:Dadc 1024*Rm/(Rv+Rm)(3)如果这里取测量电阻Rm选择4.7K9,那幺可以计算出在-55℃时所对应的Dadc=1024*1000/(250062+100C)=4;在125℃时所对应的Dadc=1024*1000/(242.64+10C0)824。根据这样的对应关系对数据进行预处理,得到如下处理结果如表1-2所示:表1tatic const Int16 NTCTAB2[18119,20;21,22,23,24,26,27,29,30,32;34,36,38,40,42,44,47,49,52,55,57,61;64,67,71,74,78,82,86,90,95,99,104,109114120,150,156,161,168,172,180,187,194,201,208,215,22,230,238,247255,264,272,280,291,302,310;319328,338;347,357367,376,384;395,4C5,414r424;434444,453,464,47448,494,502;512,522,531,540,551,560,569,579,586;595,604,613,624,633,642,650;658,666,673,680,688:696,704,712,719,726,733,741;749,755,760,767,774,780,785,791,798,804,811,816,8827,832,837,842;847,851,856;862,868,873,856;860,64,868,872,376;879,883,886;890,893,896,899;902,905,908,911,914;917,919,922;924,927,929,931;934,936,938,940,942,94,946,947,949,951,953,954,956,958,959,961,962;964,965,966,968,969,970,971,973,974};//4.7K当然这也是应用例中所需要的一个很重要的转换表,这一部分是事先制作好的表格,将为接下来的处理提供参考依据。测量电阻Rm的选取是有一定的规律的,在实际的应用中不一定都需要测量全程温度,可以估算岀大致的温度范围。木着提高测量精度的宗旨:如果是应用在测量低温的系统中建议Rπ选择较大的电阻(10KΩ),如果在测量较高温的系统中建议Rn选择较小的电阻(1κΩ)等。线性插值在AEC进行数据采集的过程中不可能每个数值都在整温度所对应的AD数值上,所以如果在两个数据的中间一段就要对其进行进一步的精确定位。这样就必须知道采集到的数据在表1-2中的具体位置,因此要对数据表进行搜索、查找。线性表的查找(也称枍索),可以有比较常见的顺序查找、折半查找及分块查找等方法,分析线性表1-2可以得到折半查找的算法是比较高效的。Eg如果ADC采样的数值为Dade=360,即357
    2020-12-04下载
    积分:1
  • 51单片机两轮自平衡小车全套设计方案
    基于51单片机的两轮自平衡小车全套设计方案,其中包括源代码 app 电路等资源。
    2020-06-29下载
    积分:1
  • 两块stm32 spi通信,使用DMA
    本例程主要是用于两块stm32之间的spi通信,用到了DMA节省了cpu的的时间,大大提高了cpu的利用率
    2021-05-06下载
    积分:1
  • 物流配送中心选址的多目标优化模型
    物流配送中心选址的多目标优化模型,配送中心,选纸模型,物流成本,服务水平,可靠度
    2020-12-01下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载