登录
首页 » Others » C++远程监控软件源码

C++远程监控软件源码

于 2020-12-11 发布
0 249
下载积分: 1 下载次数: 1

代码说明:

C++编写适用于windows的远程监控软件源码,结构简明清晰,有远程即时监控鼠键控制上传文件远程shell执行等功能,非常适合学习研究

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • DC-DC变换器Simulink仿真模型
    本人在Simulink平台搭建的DC-DC变换器仿真模型,可以使用构成你自己模型的一部分。
    2020-11-28下载
    积分:1
  • 基于PCA的人脸识别MATLA B实现及GUI设计
    这是前几天刚做的一个图像处理的大作业,给大家分享一下。主要是实现了一些基本的图像处理的功能,并做了一个小界面,很简单。基本功能有图像平滑(邻域平均法)、锐化(拉普拉斯)、二值、灰度化、腐蚀、膨胀、小波分解(只显示近似部分图像)、边缘提取、人脸识别(基于PCA)。 程序有两个,一个事GUI的,一个是人脸识别的(大家自己修改人脸库路径)。论文(word和PDF都有)也在里面,希望对大家能有帮助。
    2020-11-30下载
    积分:1
  • 导航卫星坐标定位和伪距测量结算及matlab仿真
    导航卫星坐标定位和伪距测量结算及matlab仿真
    2020-12-06下载
    积分:1
  • MFC画直线及简单图形
    可以用Bresenham绘制直线 五角星等简单图形。
    2020-12-08下载
    积分:1
  • Robust Statistics - 2nd Edition
    鲁棒统计,现代统计方法, Robust Statistics第二版,学习现代统计方法R○ BUST STAT|STCSSecond editionPeter j, huberProfessor of Statistics, retiredKlosters SwitzerlandEⅣ ezio m. RonchettiProfessor of StatisticsUniversity of Geneva, SwitzerlandWILEYA JOHn WileY SONS INC. PUBliCAtIONCopyrightc 2009 by John Wiley Sons, Inc. All rights reservedPublished by John Wiley sons, Inc, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form orby any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except aspermitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the priorwritten permission of the Publisher, or authorization through payment of the appropriate per-copy fee tothe Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax978)750-4470,oronthewebatwww.copyrigom. requests to the publisher for permission shouldbe addressed to the permissions department John Wiley sons, Inc., 11 1 River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp:/www.wileycom/go/permissionLimit of Liability /Disclaimer of Warranty: While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy orcompleteness of the contents of this book and specifically disclaim any implied warranties ofmerchantability or fitness for a particular purpose. No warranty may be created or extended by salesrepresentatives or written sales materials. The advice and strategies contained herein may not be suitablefor your situation. You should consult with a professional where appropriate. Neither the publisher norauthor shall be liable for any loss of profit or any other commercial damages, including but not limitedto special, incidental, consequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002.Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic format. For information about wiley products, visit our web site atwww.wileycomLibrary of Congress Cataloging-in-Publication Data:Huber Peter JRobust statistics, second edition/ Peter J. Huber, Elvezio ronchettip. cnIncludes bibliographical references and indeISBN978-0-470-12990-6( cloth)1. Robust statistics. I. Ronchetti. elvezio. II. TitleQA276.H7852009519.5-dc222008033283Printed in the United States of america10987654321To the memory o1John w. tukeyThis Page Intentionally Left BlankCONTENTSPrefacePreface to first editionGeneralities1 Why robust Procedures1. 2 What Should a robust procedure achieve?1.2.1 Robust. Nonparametric and Distribution-Free1.2.2 Adaptive procedures1.2.3 Resistant Procedures1.2. 4 Robustness versus Diagnostics1.2.5 Breakdown point1.3 Qualitative Robustness567888911. 4 Quantitative Robustness1.5 Infinitesimal Aspects141.6 Optimal Robustness171.7 Performance Comparisons18CONTENTS1.8 Computation of robust estimates181.9 Limitations to Robustness Theory202 The Weak Topology and its Metrization23eneral remarks232.2 The Weak Topology232.3 Levy and prohorov metrics272.4 The bounded Lipschitz metric322.5 Frechet and Gateaux derivatives366 Hampels Theorem413 The Basic Types of Estimates453. 1 General Remarks453.2 Maximum Likelihood Type Estimates(M-Estimates)3.2.1 Influence Function of m-estimates73.2.2 Asymptotic Properties of M-Estimates483.2.3 Quantitative and Qualitative Robustness of MEstimates3.3 Linear Combinations of Order Statistics(L-Estimates)3.3.1 Influence Function of -Estimates3.3.2 Quantitative and Qualitative robustness of l-Estimates 593. 4 Estimates Derived from Rank Tests(R-estimates3.4.1 Influence Function of R-Estimates623.4.2 Quantitative and Qualitative robustness of R-Estimates 643.5 Asymptotically Efficient M-, L,and R-Estimates674 Asymptotic Minimax Theory for Estimating Location4.1 General remarks4.2 Minimax bias4.3 Minimax Variance: Preliminaries744. 4 Distributions minimizing fisher Information764.5 Determination of Fo by Variational Methods814.6 Asymptotically Minimax M-Estimates914.7 On the minimax Property for L-and R-estimates954.8 Redescending m-estimates74.9 Questions of Asymmetric Contamination101CONTENTSScale Estimates1055.1 General remarks1055.2 M-Estimates of scale1075.3 L-Estimates of scale5.4 R-Estimates of Scale1125.5 Asymptotically efficient Scale estimates1145.6 Distributions Minimizing fisher Information for Scale5.7 Minimax Properties116 Multiparameter Problemsin Particular Joint Estimationof Location and scale1256. 1 General remarks1256.2 Consistency of M-Estimates1266.3 Asymptotic Normality of M-Estimates1306. 4 Simultaneous m-Estimates of Location and scale1336.5 M-Estimates with Preliminary Estimates of Scale1376.6 Quantitative robustness of Joint Estimates of Location and Scale 1396.7 The Computation of M-Estimates of Scale14368Studentizing1457 Regression1497. 1 General remarks1497. 2 The Classical Linear Least Squares Case1547. 2.1 Residuals and Outliers1587.3 Robustizing the Least Squares Approach1607.4 Asymptotics of robust regression Estimates163741 The Cases hp2→0 and hp→07.5 Conjectures and Empirical Results1687.5.1 Symmetric Error Distributions1687.5.2 The Question of Bias1687.6 Asymptotic Covariances and Their estimation1707. 7 Concomitant Scale estimates1727.8 Computation of Regression M-Estimates1757.8.1 The Scale Step1767.8.2 The Location Step with Modified residuals1787.8.3 The Location Step with Modified Weights179CONTENTS7.9 The Fixed Carrier Case: What Size hi?1867. 10 Analysis of Variance1907. 11 LI-estimates and Median polish1937. 12 Other Approaches to Robust Regression1958 Robust Covariance and Correlation Matrices1998. 1 General remarks8.2 Estimation of Matrix Elements Through robust Variances2038.3 Estimation of Matrix Elements Through robust Correlation2048.4 An Affinely equivariant approach2108.5 Estimates Determined by Implicit Equations2128.6 Existence and Uniqueness of Solutions2148.6. 1 The Scatter estimate v2148.6.2 The Location estimate t2198.6.3 Joint Estimation of t and y2208.7 Influence Functions and Qualitative robustness2208.8 Consistency and asymptotic normality2238.9 Breakdown Point48.10 Least informative distributions2258.1058. 10.2 Covariance2278.11 Some Notes on Computation2339 Robustness of Design2399.1 General remarks2399.2 Minimax Global Fit9.3 Minimax Slope24610 Exact Finite Sample Results24910.1 General Remarks24910.2 Lower and Upper Probabilities and Capacities25010.2.1 2-Monotone and 2-Alternating Capacities25510.2.2 Monotone and Alternating Capacities of Infinite Order 25810.3 Robust Tests25910.3. 1 Particular Cases26510.4 Sequential Tests267
    2020-12-03下载
    积分:1
  • 用matlab产生3维的高斯分布
    用matlab产生3维的高斯分布,初学者的练习,r=linspace(0,3,500);the=linspace(0,2*pi,500);[rho,theta]=meshgrid(r,the);[x,y]=pol2cart(theta,rho);n=0;
    2021-05-06下载
    积分:1
  • 上网记录、USB痕迹、硬盘文件痕迹彻底清除,记住,不是清除注册表,是彻底清除硬盘碎片切记录,在PE下运行。
    内部软件,这款软件需要在PE系统下运行,是各种**检查的有效工具,亲测完全可用,不用低格硬盘,不用擦除空间,不用重装系统,固态盘系统待测试
    2020-03-06下载
    积分:1
  • 以太网VERILOG序.zip
    【实例简介】基于XILINX嵌入式硬核的VERILG EXAMPLE,包含TESTBENCH的MODELSIM仿真程序
    2021-12-13 00:31:35下载
    积分:1
  • 基于卷积神经网络的图像识别
    基于卷积神经网络的图像识别 基于卷积神经网络的图像识别关于学位论文独创声明和学术诚信承诺本人向河南大学提出硕士学位申请。本人郑重声明:所呈交的学位谂文是本人在导师的指导下独立完成的,对所研究的课题有新的见解。据我所知,除文中特别加以说明标注和致谢的地方外,论文中不包括其它人已经发表或撰写过的研究成果,也不包括其它人为获得任何教育、科研机构的学位或证书而使用过的材料。与我一同工作的同事对本研究所做的任何贡献均己在论文中作了明确的说明并表示了谢意在此本人郑重承诺:所呈交的学位论文不存在舞弊作伪行为,文责自负。学位申请人(学位论文作者)签名:亚强2015年5月20日关于学位论文著作权使用授权书本人经河南大学审核批准授予硕士学位。作为学位论文的作者,本人完全了解并同意河南大学有关保留、使用学位论文的要求,即河南大学有权向国家图书馆、科研信息机构、数据收集机构和本校图书馆等提供学位论文(纸质文本和电子文本)以供公众检索、查阅。本人授衩河南大学出于宣扬、展览学校学术发展和进行学术交流等目的,可以采取影印、缩印、扫描和拷贝等复制手段保存、汇编学位论文(纸质文本和电子文本)(涉及保密内容的学位论文在解密后适用本授权书)学位获得者(学位论文作者)签名:卫2015年5月20日学位论文指导教师签名:2015年5月20日摘要Deep learning是机器学习研究的新领域,掀起了机器学习的新浪潮,在各个行业都受到了广泛的关注。 Google brain项目、微软全自动同声传译系统、百度硏究院等都是 deep learning技术发展的见证。随着大数据和深度模型时代的来临,deeplearning技术也得到了广泛的重视和发展,它带来的技术进步也必将改变人们的生活随着机器学习领域的发展,最近几年对卷积神经网络的研究也越发深入。现在卷积神经网络已经广泛的应用到各种领域,并取得了巨大的成果。卷积神经网络是在人工神经网络的基础上发展起来的·种高效的识别算法。典型的积网络结构是由 Lecrn提出的 LeNe t-5,它包含多个阶段的卷积和抽样过程,然后将提取到的特征输入到全连接层进行分类结果的计算。卷积神经网络通过特征提取和特征映射过程,能够较好的学习到图像中的不变特征。现在研究人员在典型的 LeNet5的基础上,使用多种方法改善卷积网终的结构和性能,从而提高网终的通用性和对图像的识别效果。本文结合图像的特点,在深入硏究了卷积网络的理论和国内外研究成果的基础上主要做了以下工作:(1)研究了卷积网络的训练算法,通过对算法分析,调试并找到最优初始化参数和最适应的网络结构配置。(2)对于分类结果的计算,使用了多区域的测试方法,通过在测试的过程中对图像的多个区域进行计算能够提高图像识别的准确率。〔3)为系统设计了一个通用的数据集输入接口,可以将自己构建的图像薮据集输入到卷积神经网络的结构中,训练和查看图像分类的结果。(4)在卷积层使用了局部偏差垬亨和非共亨两种方法,在数据集上测试并进行结果分析。(5)在隐含层使用了网络泛化的方法 DROPOUT,在数据集上测试并进行结果分析。通过以上改进方法的使用,卷积网络的通用性和性能得到了提高。关键词:,图像识别,特征提取
    2020-11-30下载
    积分:1
  • 基于小波变换的数字水印算法
    基于小波变换的数字水印算法matlab代码,含有各种攻击的效果对比,对做毕设的同学应该有帮助
    2020-12-12下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载