登录
首页 » Others » 快递分拣机器人设计文档(不含源码)

快递分拣机器人设计文档(不含源码)

于 2021-05-06 发布
0 282
下载积分: 1 下载次数: 2

代码说明:

快递分拣机器人设计文档(不含源码)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 粒子滤波matlab代码
    粒子滤波matlab代码,能够运行。Pf粒子滤波实现的目标跟踪程序,可实现针对非高斯噪声情况下的跟踪
    2021-05-06下载
    积分:1
  • GMSK调制的SIMULINK实现
    在本文中,首先介绍GMSK、MSK原理,并对其产生方式进行理论分析;然后,设计了一个GMSK、MSK调制解调系统。最后,利用SIMULINK仿真分析在信道中加入高斯白噪声与不加高斯白噪声两种情况下调制波形的异同,其中还分析了各主要参数对调制的影响,同时将仿真结果与理论相比较,使研究更加深入。从而,加深对GMSK、MSK的认识和理解,为解决调制技术与移动通信技术的频谱利用率问题提供基础,对今后移动通信的研究具有积极的作用。
    2020-12-02下载
    积分:1
  • MFC实现的AES加解密软件(内含源代码)
    该软件实现了AES-128加密方式的16进制字符加密,且能通过密码,密文进行解密。内含MFC源代码,可以进行二次开发。
    2020-05-23下载
    积分:1
  • 基于STM32的数字示波器
    基于STM32的简单数字示波器,用到了UCGUI,TFT屏。因为平台限制,直接移植可能不行,但是可以参考。
    2020-11-28下载
    积分:1
  • 应用随机过课件(刘嘉焜)
    应用随机过程,作者:刘嘉焜出版社:科学出版社出版日期:2005-01ISBN:703013006版次:2版包装:平装开本:小16开页数:355页印张:1次在本书第一版中,作者重视理论的实际背景和应用的写作风格,便许多工作在不同领域的读者能够比较容易地掌握这个困难的数学领域,因而受到欢迎。在本书第二版中,作者继续发扬这一写作风格,并增加了一些内容,如吸收Markov链,随机微分方程在金融工程中的应用和时间序列分析等,其中包括了作者本人的研究成果。本书主要内容包括随机过程的基本概念、马氏过程、随机分析与随机微分方程、平稳过程等。本书读者对象为高等院校工程各专业以及数学、物理、化学、生物工程、
    2020-12-04下载
    积分:1
  • 《GPU高性能计算之CUDA》书中实例源代码
    《GPU高性能计算之CUDA》书中实例源代码,经调试正常。GPU高性能计算系列丛书的第一本《GPU高性能计算之CUDA》已经出版,由张舒,褚艳利,赵开勇,张钰勃所编写。本书除了详细介绍了CUDA的软硬件架构以及C for CUDA程序开发和优化的策略外,还包含有大量的实例供读者学习参考用。下表是各个实例的介绍列表。文件夹 对应书中章节备注ACsearch_DPPcompact_with_driver5.2.2 AC多模式匹配算法asyncAPI 2.5 异步API调用示例bandwidthTest 2.3.6 带宽测试Bitonic 5.1.1 双调排
    2020-12-06下载
    积分:1
  • BVH 文件播放器
    实用简单的BVH播放器 用了就知道 操作简单 代码实用
    2020-12-07下载
    积分:1
  • 消息传递算法 和积算法 因子图 matlab源码
    通过构造因子图(Factor Graph)关于和积算法(Sum-Product Algorithm)的matlab源码,借此可实现消息传递算法(Message Propagation Algorithm,MPA)、LDPC编解码、卡尔曼滤波、隐性马尔可夫链(HMC)等应用
    2020-12-06下载
    积分:1
  • 家庭本体推理的个含源代码的学习例子
    网上的关于本体的资源太少了,并且理论方面的东西比较多,所以现在上传有一些源代码的本体资料,希望有用。
    2020-12-03下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载