直流供电DCVoltage):5±1工作电流Current(mA):<50●采样设备主要技术指标:通道数:双通道(支持双通道同步采样功能)接收信号:北斗三号导航信号B1C/B2a/B3等(通过配置攴持全频点导航信号)用户手动设置射频参数(1.0G20G北斗三号B1C频段北斗三号B2a频段北斗三号B3频段北斗二号B1频段●北斗二号B2频段北斗二号B3频段GPsL1频段●GPsL2频段●GPsL5频段●伽利略E1频段伽利略E5a频段伽利略E5b频段GLONASSL1频段GLONASSL2频段信号带宽:最大攴持32.736MHz带宽(通过配置攴持n*2.046MHz,n=1-16)采样频率:支持10MHz/20MHz40MHz三种采样频率采样制式Q正交采样数据位宽:支持4比特/8比特两种数据位宽参考时钟基准频率:20MHz(恒温晶振)频率稳定度优于1.0e-8(0.01ppm)输入信号电平:160dBmw-60dBm输入阻抗:509射频通道总体损耗:≤1.5dB最大存储时间不限计算机接口USB30天线接口SMA头(母座)天线:5VDC有源天线,TNC接口数据获取能力可定时,也可不限时连续采样供电:+5V,4A电源功耗:10W北斗三号新体制多功能可配置双通道采样器S|S800前后面板介绍前面板:4D(②((1)十5V电源输入接凵,该接凵为设备提供工作电源:2芯电源座定义+5V2地(2)电源供电指示灯(红色),当+5V供电加上时,红色指示灯亮(3)USB3.0数据采样工作状态指示灯(蓝色),当USB3.0处于采样状态时,蓝色指示灯常暗型交替闪烁,当停止采样时,蓝色指示灯常亮型交替闪烁(4)USB3.0接口,数字中频采样接口后面板:射频通道射频通道B天线输入天线输入(1)射频通道A天线输入:天线接凵类型SMA母头,注意天线具有+4.8V馈电输出(输出具有短路保护功能),供给卫星导航有源天线做为馈电电源(2)射频通道B大线输入:大线接口类型SMA母头,注意大线具有-4.8V馈电输出(输出具有短路保护功能),供给玊星导航冇源天线做为馈屯电源。三,北斗三号新体制多功能可配置双通道采样器S|S800上电使用说明步骤1:连接配套的三星七频有源天线至北斗三号新体制多功能可配置双通道采样器S|S800后面SMA头天线输入AB端(如果需要射频通道AB都做采样的话天线输出可通过一分二功分器进行连接,如下图所示注意当需要同吋接射频通道AB吋,可以通过一分二功分器实现,如下图所示接设备射频输入端B接天线端接设备射频输入需要注意的是,因为接收天线为有源天线,需要通过线缆进行+5V馈电,而功分器中标识有RF十DC的SMA端是具冇直流馈屯功能端,而对于S丨s800的射频通道A天线输入端或射频通道B天线输入端都具有+5∨馈电输出,因此不需要特别区分馈电信号端步骤2:连接USB3.0接口线,一头釗计算札端,另一头至北斗三号新体制多功能可型置双通道采样器S|S800前亩板∪SB3.0接口端;步骤3:连接+5∨电源接口线至北斗三号新体制多功能可配置双通道采样器S|S800前亩板供电电源端;步骤4:打开电源,这里电源红色指示灯亮,并且计算机弹出设备驱动安装提示,参考第三部分进行安装;步骤5:驱动程序安装完成后,接下来安装上位机采样程序“北斗三号新体制多功能可配置双通道采样器S|s800一上位机安装软件.exe步骤6:采集薮据,通过matlab程序分析数据-IMDN开发者社群-imdn.cn"> 直流供电DCVoltage):5±1工作电流Current(mA):<50●采样设备主要技术指标:通道数:双通道(支持双通道同步采样功能)接收信号:北斗三号导航信号B1C/B2a/B3等(通过配置攴持全频点导航信号)用户手动设置射频参数(1.0G20G北斗三号B1C频段北斗三号B2a频段北斗三号B3频段北斗二号B1频段●北斗二号B2频段北斗二号B3频段GPsL1频段●GPsL2频段●GPsL5频段●伽利略E1频段伽利略E5a频段伽利略E5b频段GLONASSL1频段GLONASSL2频段信号带宽:最大攴持32.736MHz带宽(通过配置攴持n*2.046MHz,n=1-16)采样频率:支持10MHz/20MHz40MHz三种采样频率采样制式Q正交采样数据位宽:支持4比特/8比特两种数据位宽参考时钟基准频率:20MHz(恒温晶振)频率稳定度优于1.0e-8(0.01ppm)输入信号电平:160dBmw-60dBm输入阻抗:509射频通道总体损耗:≤1.5dB最大存储时间不限计算机接口USB30天线接口SMA头(母座)天线:5VDC有源天线,TNC接口数据获取能力可定时,也可不限时连续采样供电:+5V,4A电源功耗:10W北斗三号新体制多功能可配置双通道采样器S|S800前后面板介绍前面板:4D(②((1)十5V电源输入接凵,该接凵为设备提供工作电源:2芯电源座定义+5V2地(2)电源供电指示灯(红色),当+5V供电加上时,红色指示灯亮(3)USB3.0数据采样工作状态指示灯(蓝色),当USB3.0处于采样状态时,蓝色指示灯常暗型交替闪烁,当停止采样时,蓝色指示灯常亮型交替闪烁(4)USB3.0接口,数字中频采样接口后面板:射频通道射频通道B天线输入天线输入(1)射频通道A天线输入:天线接凵类型SMA母头,注意天线具有+4.8V馈电输出(输出具有短路保护功能),供给卫星导航有源天线做为馈电电源(2)射频通道B大线输入:大线接口类型SMA母头,注意大线具有-4.8V馈电输出(输出具有短路保护功能),供给玊星导航冇源天线做为馈屯电源。三,北斗三号新体制多功能可配置双通道采样器S|S800上电使用说明步骤1:连接配套的三星七频有源天线至北斗三号新体制多功能可配置双通道采样器S|S800后面SMA头天线输入AB端(如果需要射频通道AB都做采样的话天线输出可通过一分二功分器进行连接,如下图所示注意当需要同吋接射频通道AB吋,可以通过一分二功分器实现,如下图所示接设备射频输入端B接天线端接设备射频输入需要注意的是,因为接收天线为有源天线,需要通过线缆进行+5V馈电,而功分器中标识有RF十DC的SMA端是具冇直流馈屯功能端,而对于S丨s800的射频通道A天线输入端或射频通道B天线输入端都具有+5∨馈电输出,因此不需要特别区分馈电信号端步骤2:连接USB3.0接口线,一头釗计算札端,另一头至北斗三号新体制多功能可型置双通道采样器S|S800前亩板∪SB3.0接口端;步骤3:连接+5∨电源接口线至北斗三号新体制多功能可配置双通道采样器S|S800前亩板供电电源端;步骤4:打开电源,这里电源红色指示灯亮,并且计算机弹出设备驱动安装提示,参考第三部分进行安装;步骤5:驱动程序安装完成后,接下来安装上位机采样程序“北斗三号新体制多功能可配置双通道采样器S|s800一上位机安装软件.exe步骤6:采集薮据,通过matlab程序分析数据 - IMDN开发者社群-imdn.cn">
登录
首页 » Others » 北斗三号新体制多功能可配置双通道采样器SIS800

北斗三号新体制多功能可配置双通道采样器SIS800

于 2021-05-06 发布
0 207
下载积分: 1 下载次数: 4

代码说明:

北斗三号新体制多功能可配置双通道采样器SIS800,可支持卫星导航全频点系统频段中频数据采集,基于USB3.0接口上传数据目录第一部分北斗三号新体制多功能可配置双通道采样器SS800-硬件连接说明北斗三号新体制多功能可配置双通道采样器S|S800参数说明二.北斗三号新体制多功能可配置双通道采样器S|s800前后面板介绍三.北斗三号新体制多功能可配置双通道采样器S|S800上电使用说明第二部分北斗三号新体制多功能可配置双通道采样器S|s800USB30驱动程序安装说明…10第三部分北斗三号新体制多功能可配置双通道采样器S|S800-上位机软件安装及使用说明….16上位机软件安装说明…16第四部分基于 Matlab卫星中频信号捕获软件使用说明22采样数据组织格式.22二. Matlab程序使用说明.23第一部分北斗三号新体制多功能可配置双通道采样器S|S800-硬件连接说明北斗三号新体制多功能可配置双通道样器S|S800是上海宇志通信技术有限公司在2018年最新推出的一款支持多卫星导航系统频段的双通道卫星中频信号采样器,数据传输采用USB3.0接口,20MHz/0.01ppm恒温晶振做为设备的同步参考时钟。双通道采样器中的每个通道可灵活配置采集的频段(1.0GHz~20GHz即L波段范围)、带宽(2046MHz~32736MHz,步进2.046MHz,其中32736MHz的带宽支持北斗号新体制信号B1C的系统带宽),两个通道联动设置采样频率(10MHz、20MHz、40MHz)以及数据位宽(4比特、8比特)在使用这款卫星中频信号采样的过程中,需特别提请用户注意的是,S|S800内部采用恒温晶振来做为设备的同步参考晶振,而恒温晶振通常需要有一个预热的过程,因此建议用户预热3~5分钟,即开机3~5分钟后进行样工作。北斗三号新体制多功能可配置双通道采样器S|S800参数说明(1)主要用途卫星导航定位系统软件接收机设计开发姿态测量卫星导航定位系统芯片和接收机设计开发冫卫星导航定位接收机干扰、抗干扰研究导航卫星信号载波相位研究与应用研究导航卫星信号多径下扰研究导航卫星信号分析≯高灵敏度玊星导航接收机搜索与跟踪算法硏究高精度卫星导航接收机算法研究(2)参数设置界面北斗三号新体制多功能可配置双通道平样器-Ss800射频来样通道A参数设置射蜮采样通追B参数设置世使能]来样>使能[函道使能]射频采样通道B使胎[频选择]旧户动频勾段选择]用户手动设置射频参效扎三号B1C频射频载频率176MH(可设范围1.0~2.0GH斗三号B3I频段[信号带宽]八二号B2頻段信号带贸]信号戏边带16+2045NH可设范围116)扌斗是B3频段∈PsL1频段[样速率]PsL2频x-〉[乐样速家]平样速平->4MH(〔频通道与联动设置:EpsL5掀段优岡F1频数据位!时E53频段x=助位究]热提肉4比持〔频函与联动设置)什BE5b频CLONA5L频段初始化操怍区1单击览按钮选择存储文件路径和名(买际生成文件名会在这个文件名基砒上添加厂采样多数「间等泪关辅助信息存储文件名测览2输入仔时间卡度单位:秒)为Q时表示不限时保仔数提3单击保存数据拉钮"开始保存从UB30妄妾收到的数据保存数据4)上位进度0000秒(3)技术指标:●推荐天线基本指标:极化 Polarization:右旋圆极化RHCP天线增益Gain(GBi仰角90度:≥6仰角20度≥0仰角10度:轴比:仰角90度≤3仰角15度≤5相位中心误差(mm):2LNA增益Gain(dBi)40±2驻波比∨SW.R

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • JTIDS-LINK16数据链—梅文华
    JTIDS/Linkl6战术数据链是美军20世纪70年代开始研制、80年代开始装备的战术数据链系统,由TDMA协议、JTIDS波形和TADIL J消息标准组成。它采用直接序列扩频、跳频等抗干扰技术,是美国陆、海、空三军共同使用的一种大容量、保密、抗干扰、时分多址的战术信息分发系统,具有相对导航、识别、任务管理、武器协同、监视、空中控制、保密话音和电子战能力,可以将陆、海、空三军参战单位的终端设备连成一个统一的通信网络,以加快情报传递、统一指挥和协同作战。本书密切结合国防现代化和武器装备现代化建设,根据外军JrrTDs/Linkl6数据链的相关资料,深入浅出地阐述了JTIDS/Linkl6数据链
    2021-05-06下载
    积分:1
  • 格子Boltzmann方法处理复杂边界
    格子Boltzmann方法处理复杂边界,包括三类:启发式边界处理方式,插值密度分布函数的边界处理方式,浸没边界-格子 Boltzmann 方法。
    2021-05-06下载
    积分:1
  • 开关电源恒流控制
    电源恒流控制程序,包括电流取样,处理,PWM
    2020-12-02下载
    积分:1
  • 离散时间信号处理第三版答案.zip
    本书系统论述了离散时间信号处理的基本理论和方法,是国际信号处理领域中的经典权威教材。内容包括离散时间信号与系统,z变换,连续时间信号采样,线性时不变系统的变换分析,离散时间系统结构,滤波器设计方法,离散傅里叶变换,离散傅里叶变换的计算,利用离散傅里叶变换的信号傅里叶分析,参数信号建模,离散希尔伯特变换,倒频分析和同态反卷积。本书例题和习题丰富,具有实用价值。
    2020-12-11下载
    积分:1
  • Key Technologies for 5G Wireless Systems
    5G无线通信系统关键技术(剑桥大学出版社) 2017年出版 对于5G所有最新技术进行了详细说明 很全的工具书Key Technologies for5G Wireless SystemsVINCENT W. S, WONGUniversity of British ColumbiaROBERT SCHOBERUniversity of Erlangen-NurembergDERRICK WING KWAN NGUniversity of New South WalesLI-CHUN WANGNational Chiao-Tung University即CAMBRIDGEUNIVERSITY PRESSCAMBRIDGEUNIVERSITY PRESSUniversity Printing House. Cambridge CB2 SBS. United KindomOne Liberty Plaza, 20h Floor New York, NY I(H0X, USA477 williamstown Road, port Melbourne, yic 3207 australia48424, 2nd Floor, Ansar Rod, Daryaganj. Delhi- I l4XH2, India79 Anson Road, #o6-(/ 00, Singapore 079%MCambridge University Press is part of the Lniversity of CambridgeIt furthers the University s mission by disseminating knowledge in the pursuit ofeducation, leaming and research at the highest international levels of excellence.www.cermbrid吧eInformtiononthistitlewww.cambridgeorg/978110713241810,1017③781316771655C Cambridge University Press 2017This puhlication is in copyright. Subjcct to sututonry exceptionand to the provisions of relewant collective licensing agreementsno reproduction of any part may take place without the writtenpermission of Cutmbridgre University Press.First published 2(117Printed in the United Kingdom by TJ International Ltd. Padstow, CornwallA catalogue recor for this pudlieafiove is aailable fromm the British LibraryLibrary of Congress Cataloging- in Pi hlicaiomz dataNames: Wong, Vincent W.S., editorTitle: Key technologies for 5G wireless systems/edited by Vincent W.S. Wong [and 3 otherOther titles key technologies for five g wireless svstemsDescription: Carmbrisige: New York, NY: Cambridge Lniversity Press, 2017.Identifiers: l CCN 2016045220)1 ISBN 9781 172418 (hardback)Subjects: LCSH: Wireless communication systems, I Machine-to-machinecommunications. Internet of things.Classitication: LCC TKs1032K49 2(17 DDC 621.38450-dc23LcrecordavailaBleathttps://lccnioc-gov/2016m5220)ISBN 978-1-107-17241- HardbackCambridge University Press has no responsibility for the persistence or accuracy ofURLs for extermal or third-party Internet websites referred to in this puhlication,and does not guarantee that any content on such websites is, or will remainaccurate of appropriateContentsList of Contributorspage xvIPrefaceKXIOverview of New Technolog ies for 5G SystemsVincent W S, Wong, Robert Schober, Derrick Wing Kwan Ng, and Li-Chun Wang1.1 Introduction1.2 Cloud Radio Access Networks1.3 Cloud Computing and Fog Computing1. 4 Non-orthogonal Multiple Access1. 5 Flexible Physical Layer Design334.4671. 6 Massive MIMo1. 7 Full-Duplex Communications1. 8 Millimeter wave1.9 Mobile Data Offloading, LTE-Unlicensed, and Smart Data Pricing131. 10 IoT M2M. and D2D1. I1 Radio Resource Management, Interference Mitigation, and Caching61. 12 Energy Harvesting Communications1. 13 Visible Light Communication19Acknowledgments20ReferencesPart I Communication Network Architectures for 5G Systems25Cloud Radio Access Networks for 5G Systems27Chih-Lin I, Jinn Huang, Xueyan Husang, Rongwved Ren, and Yami. Chen2.1 Rethinking the Fundamentals for 5G Systems272 User- Centric Networks2923 C-RAN Basics292.3.1 C-RAN Challenges Toward SGI302.4 Next Generation Fronthaul Interface (NGFI: The FH Solutionfor SGC-RAN312. 4.1 Proof-of-Concept Development of NGFI33Contents2.5 Proof-of-Concept Verification of Virtualized C-RAN2.5.1 Data packets3725.2 Test Procedure382.5.3 Test Results392. 6 Rethinking the Protocol Stack for C-RAN2.6.1 Motivation402.6.2 Multilevel Centralized and Distributed Protocol Stack402.7 Conclusion45AcknowledgmentsReferencesFronthaul-Aware Design for Cloud Radio Access Networks48Liang Liu, Wei Yu, and Osvaldo Simeone3. 1 Introduction483.2 Fronthaul-Aware Cooperative Transmission and Reception493. 2.1 Uplink513.2.2 Downlink573.3 Fronthaul-Aware Data Link and Physical layers61.3. I Uplink633.3.2 Downlink693.4 Conclusion73Acknowledgments74References74MobEdge computing76Ben Liang4.1 Introduction764.2 Mobile Edge Computing774.3 Reference architecture794.4 Benefits and Application Scenarios804 4.1 User-Oriented Use cases4. 4.2 Operator-Oriented Use Ca814 5 Research challenges824.5.1 Computation Offloading824.5.2 Communication Access to Computational Resources834.5.3 Multi-resource Schedulin844.5 4 Mobility Management854.5.5 Resource Allocation and Pricing4.5.6 Network functions virtualization864.5, 7 Security and Pri864.5.8 Integration with Emerging Technologies874.6 Conclusion88ReferencesContentsDecentralized Radio Resource Management for Dense HeterogeneousWireless networksAbolfazl Mehhodniya and Fumiyuki Adach5.1 Introduction925.2 System Model935.2.1 SINR Expression5.2.2 Load and Cost Function Expressions955.3 Joint BSCSA/UECSA ON/OFF Switching Scheme965.3.1 StrateTy Selection and Beacon Transmission53.2 UE AssocIation5.3.3 Proposed Channel Segregation Algorithms985.3.4 Mixed-Strategy Update3.4 Computer Simulation5.5 Conclusion104Acknowledgments04References105Part ll Physical Layer Communication Techniques107Non-Orthogonal Multiple Access(NOMA)for 5G Systems109Wei Llang, Zhiguo Ding, and H. Vincent Poor6.1 Introduction1106.2 NOMA in Single-Input Single-Output(SISO)Systems1126.2.1 The basics of nomaI126. 2. 2 Impact of User Pairing on NOMA136.2,3 Cognitive Radio Inspired NOMA6. 3 NOMA in MIMO Systems1206.3.1 System Model for MIMO-NOMA Schemes1216.3.2 Design of Precoding and Detection Matrices with Limited CSIT 1236.3.3 Design of Precoding and Detection Matrices with Perfect CSIT 1266.4 Summary and Future Directions128ReferencesFlexible Physical Layer Design133Maximilian Matthe, Martin Danneberg, Dan Zhang, and Gerhard Fettweis7.1 Introduction1337. 2 Generalized Frequency Division Multiplexing357.3 Software-Defined waveform1377. 3. 1 Time Domain Processing1387.3.2 Implementation Architecture1387.4 GFDM Receiver Design14174 Synchronization unit1427. 4.2 Channel Estimation Unit1474.3 MIMo-GFDM Detection Unit145Contents7.5 Summary and Outlook147Acknowledgments148References488Distributed Massive MIMO in Cellular Networks15IMichail Matthaiou and Shi Jin8. I Introduction15l8. 2 Massive MIMO: Basic Principles1528.2.1 Uplink Downlink Channel Models1538.2.2Favorable Propagation1548.3 Performance of Linear Receivers in a Massive MIMO Uplink1548.4 performance of linear precoders in a massive mimo downlink1578. s Channel estimation in massive mimo systems1588.5.1 Uplink Transmission1598.5.2 Downlink Transmission1608.6 Applications of Massive MIMO Technology1618.6.1 Full-Duplex Relaying with Massive Antenna Arrays1618.6.2 Joint Wireless Information Transfer and Energy Transfer forDistributed massive mimo1638.7 Open Future Research Directions1678. 8 Conclusionl68References169Full-Duplex Protocol Design for 5G Networks172Tanelf Ahonen and Risto wichman9.1 Introduction1729. 2 Basics of Full-Duplex Systems1739.2.1 In-Band Full-Duplex Operation Mode1739.2.2 Self-Interference and Co-channel Interference1749.2.3 Full-Duplex Transceivers in Communication Links1759. 2. 4 Other Applications of Full-Duplex Transceivers1789.3 Design of Full-Duplex Protocols1799.3, 1 Challenges and Opportunities in Full-Duplex Operation1799.3.2 Full-Duplex Communication Scenarios in 5G NetworksR9.4 Analysis of Full-Duplex Protocols1829.4.1 Operation Modes in Wideband Fading Channels1829. 4, 2 Full- Duplex Versus Half-Duplex in Wideband Transmission1849.5 Conclusion1849.5.1 Prospective Scientific Research DirectionsI849.5.2 Full-Duplex in Commercial 5G Networks185RLItrtncekl8610Millimeter Wave Communications for 5G Networks188Jiho Song, Miguel R Castellanos, and David J. LoweContentsⅸx10.1 Motivations and Opportunities18810.2 Millimeter Wave Radio Propagation18910. 2.1 Radio Attenuation1890. 2. 2. Free-Space Path LOSs19I10.2.3 Severe shadow19310.2 4 Millimeter Wave Channel model19310.2.5 Link Budget Analysis19410.3 Beamforming Architectures19510.3, Analog beamforming solutions19610.3.2 Hybrid Beamforming Solutions20010.3.3 Low-Resolution Receiver Architecture2010.4 Channel Acquisition Techniques20110.4.1 Subspace Sampling for Beam Alignment20210.4.2 Compressed Channel estimation Techniques20510.5 Deployment Challenges and Applications20710.5.1 EM Exposure at Millimeter Wave Frequencies20710.5.2 Heterogeneous and Small-Cell Networks208Acknowledgments209References209Interference Mitigation Techniques for Wireless Networks214Koralia N Pappi and George K, Karag annidis1 1.1 Introduction21411.2 The Interference Management Challenge in the 5G vision21411. 2. 1 The 5G Primary Goals and Their Impact on Interference2141 1.2.2 Enabling Technologies for Improving Network Efficiencyand Mitigating Interference21611.3 Improving the Cell-Edge User Experience: Coordinated Multipoint218I 1.3.1 Deployment Scenarios and Network Architecture2181 13. 2 CoMP Techniques for the Uplink22011.3.3 CoMP Techniques for the Downlink2211 1.4 Interference Alignment: Exploiting Signal Space Dimensions2231 1.4.1 The Concept of Linear Interference Alignment224L1. 4.2 The Example of the X-Channel225I 1. 4.3 The K-User Interference Channel and Cellular NetworksAsymptotic Interference Alignment22611.4.4 Cooperative Interferenee Networks22711.4.5 Insight from IA into the Capacity Limits of Wireless Networks 22711.5 Compute-and-Forward Protocol: Cooperation at the ReceiverSide for the Uplink22811.5.1 Encoding and Decoding of the CoF Protocol22811.5.2 Achievable-Rate Region and Integer Equation Selection23011.5.3 Advantages and Challenges of the CoF Protocol232IL6 Conclusion233References233
    2020-12-06下载
    积分:1
  • E4A打开esp8266LED灯源码
    E4A打开esp8266LED灯源码,适合初学者,通过手机的局域网来控制esp8266
    2020-12-11下载
    积分:1
  • 基于opencv的图像拼接生成全景图C代码
    首先声明,这个程序并非我原创,但是原来程序有些小问题,已经整理调通,最近一直在做图像拼接的项目,翻遍了网上的程序,发现资源繁多,精品太少,所以决定将这个能实现多幅图像配准并融合得比较好的上传程序代码上传,以飨读者,主意看清楚,是基于OPENCV库的哦。
    2020-12-07下载
    积分:1
  • tdm64-gcc-5.1.0-2 64位
    tdm64-gcc-5.1.0-2,用于window下的gcc,官网下载太慢了
    2020-12-11下载
    积分:1
  • 基于改进型粒子群算法的多重阈值图像分割
    本文基于改进型粒子群算法的多重阈值图像分割方法研究
    2020-12-02下载
    积分:1
  • MSTAR数据库SAR图像
    美国MSTAR数据库中的几张SAR图片,由于上传大小限制,只能上传这些,欢迎大家下载学习!
    2020-12-06下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载