转子系统固有频率的传递矩阵计算方法及其MATLAB实现
文章介绍了计算多自由度转子系统固有频率的传递矩阵法,以及用于实现该算法的Prohl法和Riccati 法的推导过程。利用Matlab 强大的绘图计算功能和改进的Riccati 传递矩阵法所具有的良好的数值稳定性,避免了传统的Prohl 传递矩阵法在计算过程中的丢根现象,提高了整个转子系统分析运算的精度。并用Matlab 对各算法的数值稳定性进行了分析。190其中112,21,2对应于(3)式的矩阵各项。将式(6)展开,得:}+1=11M}+12引入如下的 Riccal变换式中[]就是ca传递矩阵,它是一个2×2阶的待定矩阵,把式(8)代人式(7)式中得这就是 Riccait递推公式。由起始截面的边界条件(门1=0,(e小)≠0固有初始条件[S]=[0]。代人式(9)就可依次递推[S,[,.S对末端截面N+1有:由边界条件{门}x1-{0},{e≠0故得(10)式有解的条件是:+和PωM/法一样,在感兴趣的范围内按一定的步长选定试算频率计算出剩余量S-值,就可以画出剩余量随a变化的曲线,曲线与横坐标交点所对应的转速就是转子的各界临界转速。在PmM的传递矩阵法中,是用r阶的矩阵递推来求剩余量△(o2)。在Bceb的传递矩阵法中是用r/2阶的矩阵国递推来求剩余量S×+1,由于与的递推式中含有逆矩阵,使得剩余量曲线经常会出现异号无穷型奇点。因而在常见的转子动力系统中,剩余量曲线的根和奇点的位置十分接近。在实际转子系统中,临界转速值与奇点值间的间隔可能少于10/m,因此这种方法的丢根现象不可避免。参考PnoM方法中剩余量△(a2)无奇点的事实,可以对 riccati方法中的剩余量加以改造。由式(10)得+1n{%+12]1{}依次类推{}[]+∏[2+21{12在满足相同边界条件时应有△1=[]L21320064事实上(12)式就是(5)式,只是在数值计算中,它们是按不同的方法递推而得到的。因此在数值上它们的精度也不同。当PmM法出现数值不稳定时,(13)式所示的剩余量仍然保持相当的精度。由于剩余量(o2)随0变化的曲线不存在奇点,因此以作剩余量的曲线也不存在奇点。由于(12)式中un+ux]在进行S的递推过程中都已求得,所以在计算时也不会增加太多的工作量,但却可以克服丟根的缺点。事实上(13)式是把(11)式的异号无穷型奇点变为同号无穷型奇点,这样只有当跨过一个真正的根时才变号。枚除了两个临界转速值非常接近的情况,即当两临界转速的差小于所选步长时,一般不会发生漏根。三利用MmMh编制PmM/法、Bicn法及改进的kKRiccati法的程序对各算法结果进行分析。运用算例:如图转子系统简化模型,其数据如下1转子系统简化模型2.94t=588t(=236)1.3m(=1,2,,6)29592×10(kN·m)(i=1,2,)6)支承简化为如图模型相应参数为1.9600×106kN.m-1;2.7048×10kN·m=3.5771(=1,2)编制Maab程序运行待如下表所示的各阶频率。从表1可以看出在 Protel法的计算结果中,小于1058239rad/s固有频率共计算出了7个, Ricca算法计算出了13个固有频率,而改进了的ieai算法在消除奇点干扰后可以计算出17个固有频率。从而明显的看出改进的Racm法可以很好的避免计算过程中的丢根,在数值上具有很好的稳定性。计算细果慧裝protel算法(rads)Riccati算法(rads)改进的 Riccati算法(rad/s190.812100.815208249197.895197.895445924208.245208.24522.9655646.410445.9256832.610458.175458.1751058.239539925539925580.l659646.415574.265759.225580.165832.615646.415987.0057150451058.23583261516987.0051058.235利用a的绘图功能我们可以直观的从图中分析岀各算法的漏根现黎如图2、图3、图4所示:1912P法计算恩有单率输出固像1eg法计算回有率出四像t”改进计算有率始步入从图2、图3、图4可以看出在530到580的频率区间上,前两条曲线与0轴只有一个交点即所求固有频率为539925a/s的点,第三条曲线在相同的区间上与0轴的交点为三个,显然改进的 mccall方法找回了漏掉的根550.225ad/s和574265rad/s。利用 Matlab程序绘图我们还可以绘出改进的 Riccati方法把异号无穷型奇点转化成了同号的无穷型奇点的情况,如图5、图6所示。从图中区间987ras到1090rad/s的曲线可以明显的看出图5曲线以0轴为对称轴倒置后即得到图6在此区间的曲线线形,从而改进了 Riccati算法,在曲线中,只有在跨过个真正的根时剩余量才变号。所以除了两个临界转速之差小于所选步长的情况除外,一般改进后的riccati算法不会发生丢根c算利0改进的热计算有明p1m0p三41000100在计算多自由度转子系统固有频率的传递矩阵法中,我们可以利用 Matlab编程实现Ph/法、 riccati法以及改进的Riea法对于系统固有频率的计算,利用Maab的绘图功能对各算法的结果进行直观的分析,从而明显的看出各算法的漏根情况。本文对于计算复杂的多自由度系统固有频率具有参考意义,也可用于复杂系统低阶固有频率的粗算。同时 Matlab的矩阵运算功能在传递矩阵法中也得到了充分的利用(Electromechanical Engineering Dept, Sichuan University of Science Engineering, Zigong 643000, China)This article introduced the transfer matrix method about the natural frequency calculation of themuulti- degrees freedom rotor system, as well as inferential reasoning process about Prohl law and thericcatilayUSing formidable cartography and computation function of the Matlab as well as the good value stability aboutimproved riccati law it avoided the losing of the natural frequency and enhanced the precision ofentire rotorsystem further analyze. The value stability of various algorithms areanalyzed with Matlab in the paper toorotor system; natural frequency; transfer matrix method; Matlab
- 2020-12-04下载
- 积分:1
晶圆缺陷检测与分类的卷积神经网络
晶圆缺陷检测与分类的卷积神经网络;针对晶圆检验时扫描电镜图像的缺陷检测和缺陷分类两问题,采用了“ ZFNet”的卷积神经网络来分类晶圆缺陷,并基于该分类器实现了一种“基于块的卷积神经网络”缺陷检测算法。为了提高准确率和加快速度,又改动“更快的区域卷积神经网络”实现了另一种检测算法。第卷第期邡鑫,史峥:晶圆缺陌检测与分类的卷积神经网络ZENet classifierDarker ImIn.ril” HumpBitel检测算法示意图在训练检测器时,数据集是检测器原始尺寸的图像,且包含标记好的缺陷区域和类型。我们结构通过·系列数据扩张操作,得到组数据,随机选取相比于检测算法主作为训练集,作为测试集。要从以下三方面进行了针对性的改进算法中需要优化的参数有滑动窗口尺寸滑()针对重复计算卷积的缺点,采用先动步幅、概率阙值、面积阙值,由于无法求出统一计算特征图,再按)进行映射各参数与检测结果的明确关系式,所以采用遍历法优化参截取的办法。如图,先通过卷积网络(数。因为检测到的缺陷尽量正确和尽量检测到所有缺陷是)对输入图像计算得到其特征图,因为在输入图像矛盾的,故以精确率和召回率的调和平均值作为优上的都能映射到特征图上,所以从输入图像上按化目标,也可根据实际需要调整两者权重满足不同侧重。割取图像进行卷积运算可以替代为直接从特征图上按测试结果映射后的范围割取,从而避免多次重复计算卷积。由于用训练好的检测模型对测试集检的大小形状不·,而全连接层的神经元连接数是固定的,测,计算模式下每张图大概耗时如果检测到的缺所以对割取得到的子特征图,通过层次采样到统陷与标准答案的且类型相同,则判为正确,否尺寸以连接到全连接层。则判为错误。得到结果如表,计算得:laut Image精确率Feature Map召回率ROI其屮正确缺陷的平均表检测器测试结果数量正确错误network有缺陷(正类)图映射示意图从检测结果来看该算法基本实现∫对图像上晶圆()针对滑动窗口尺寸单·的缺点,增缺陷的检测和分类,但是值较低,缺陷检测位置不加了滑动窗口的尺寸类型,并且增加由一个全卷积网络准确,检测耗时较长,分析其原囚如下)组成的()检测出错的数据中,缺陷较大的类型易判断错,)来预判断是否有缺陷。本文采用面积缺陷较小的容易被漏掉,说明只使用一种尺寸的滑动框很分别为,长宽比分别为、共难适应尺寸变化范围较大的缺陷种尺寸的滑动窗口,依次计算其中有缺陷的概率,再从中)滑动框步幅减小则算法耗时平方倍增加,而步幅筛选出一定数量最有可能有缺陷的区域,进行非极大值抑过长造成缺陷概率分布图分辨率较差,从而检测到缺陷位制(),最后得到一定数置准确度较差量的候选区域。()相邻滑动框都有大量重叠,所以每个区域都被多()针对缺陷检测位置准确度差的缺点,次重复送入计算卷积,导致算法耗吋较长。在全连接层后连接一个边界回归层在与上述检测算法相似的图像目标检测领域,近来出用来修正缺陷位置,该回归层与分类层并列。现的很好的克服了以上缺点并取得了很好的针对本文的缺陷检测问题,直接套用标准效果,所以下面介绍如何通过改动实现品圆并不能解决问题。因为判断晶圆的缺陷类型通常需缺陷的检测与分类。要结合缺陷区域周围的图形信息,而在预判断是否有C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct计算机工程年月日缺陷吋还进行了边界回归。虽然更加准确的给出缺陷的位()将原尺寸为的图像调整为置,但送入检测网络的特征儿乎不包含缺陷周围图肜信息,使得滑动窗口尺寸能够适应缺陷大小的变化范围,也可以导致缺陷分类不准。故木文对标准徹了一些根据实际情况来具体调整。改动:得到缺陷检测算法如图,卷积网络(()将改为只判断滑动窗口内是否有缺陷,而,)将输入图僚转换成多种特征图;根据不进行边界回归,也就是只计算所有滑动窗口有缺陷的概特征图从滑动窗口中选出最有可能存在缺陷的率,选取可能性最大的个,做非极大值抑制,再选出层根据特征图中抽取出对应特征组成特可能性最大的个进行检测。征向量;检测网络()根据特征向()将卷积层的尺寸加大为,加大感受野量判断缺陷类型,并进行边界回归;最后通过和概率),从而在判断滑动框內是否有缺陷吋能参阈值对候选缺陷进行过滤即可得到最终缺陷。考更多的周围信息。Detection NetworkonFolutionnl actorSoftmaxRuI Puling liver,e Prop卟 edMS+PrubilitessionInput Image 1024*1024Fully 10 dyercrectCcrvchrionalLaver size 747图检测算法示意图模型训练和平均值作为优化目标,并且使用相同的训练集和图中的检测算法也是基于架构实现,因为卷测试集积网络提取的特征类型对相似普遍有效,故其卷积网络的测试结果参数是直接迁移第章分类器的卷积层参数。但是用训练好的检测模型对测试集检测,和的参数则需要通过方法进行训练,标准计算模式下每张图大概耗时,采用相同判定标准,提供了分开和联合两种训练方式。为了节约得到检测结果如表(其中负类总数与表中总数不同是因时间,本文采用联合训练方式,并结合缺陷检测问题的实为同一张图屮可能检测到多个缺陷),计算得际情况调整超参数精确率在训练时,对每张输入图像,要计算的滑动窗口召回率数量庞大(种尺寸的滑动窗口,滑动步幅)。所以从中随机抽取个作为训练集,其中正例其中正确缺陷的平均负例,且正例占比不超过。分类器采用表检测器测试结果损失函数数量正确错误在训练时,设置提供个,从中随有缺陷(正类)机选取个作为训练集,其屮正例无缺陷(负类)负例,且正例占比不超过。另外设置学从结果来看该算法各方面都优于检测算习率分类器采用损失函数,而边界回法和值更高说明检测检测缺陷类型正确归采用函数。且位置准确,而且速度也大大提高(检测一张图像耗时从为了与检测算法对比,在最后通过遍历法缩小到)。如图为检测缺陷示例,共中标注了缺陷优化和概率阈值时,同样以精确率和召回率的调位置、类型和对应概率C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct邡鑫,史峥:晶圆缺陷检测与分类的卷积神经网络I I图检测结果示例图结束语而对图像上的缺陷检测和缺陷分类这两个问题,本文提出的改动后的检测算法能够精准、快速地从图像中检测出缺陷并同吋进行分类。得益于卷积神经网络良好的特征学习能力,该检测算法能够根据标记好缺陷位置和类型的数据自动学习特征,从而尽量避免人工千预,使算法具有较强的适应能力。参考文献徐姗姗刘应安徐昇基于卷积神经网络的木材缺陷识别山东大学学报工学版刘云杨建滨王传旭基于卷积神经网络的苹果缺陷检测算法电子测量技术江帆刘辉王彬等基于模型的图像识别计算机工程C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct
- 2021-05-06下载
- 积分:1