登录
首页 » Others » u盘电路图分享

u盘电路图分享

于 2022-01-11 发布
0 417
下载积分: 1 下载次数: 1

代码说明:

u盘电路图分享

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于FPGA的自动售货机(verilog语言)
    设定好商品,按键1选择商品,按键2、3、4为投币,再次按下按键1购买,然后再数码管上显示余额,若不够买,则显示ER
    2020-11-28下载
    积分:1
  • HAAS VVS 机床数据采集方案.docx
    【实例简介】HAAS VVS 机床数据采集方案 ,自己总结的WORD文档,可以使用TCP调试助手进行连接机床后发送命令得到相应的响应,具体见手册,这只是入门
    2021-11-16 00:42:27下载
    积分:1
  • FLUENT UDF 正弦速度边界条件
    利用UDF设定正弦速度入口边界条件
    2020-12-11下载
    积分:1
  • Multisim仿真实例(200个电路仿真文件)
    约200个Multisim仿真文件,有助于学习Multisim软件、学习电子线路基础知识
    2020-06-28下载
    积分:1
  • 鲁棒控制文献综述(Two into one)
    自己凑合,作为作业上交的小文章论文,里面有两篇哦
    2020-04-19下载
    积分:1
  • 图虫网爬虫python实现
    Python爬虫实现对图虫网相关图片的在线爬取,只需要填写相应的主题名即可自动下载资源至相应目录
    2020-11-28下载
    积分:1
  • Vivado约束指导手册
    Vivado约束指导手册输入端口到输出端口路径在从输入端口直接到输出端口的路径上,数据:不需要在器件内部锁存(atch),直接从输入端口到输出端口。他们通常被称为ln-to-out数据路径端口时钟可以是虚拟时钟也可以是设计时钟路径举例图3-1描述了上面所有的路径,在此例图中,设计时钟CLKo可被用作端口时钟,这样既可以约束D|N延时也可以约束DOUT延时FPGA DEVICEBoardDeviceInternal Delay REGAData Path DelayREGB Internal DelayBoardDINi DOUT Device○A4InpOutputDelayBUFGPort ClockCLKOPort clockIn-2-out Data PathFigure 3-1: Path Example时钟路径部分每一个时钟路径由三个部分组成:源时钟路径数据路径目标时钟路径源时钟路径源时钟路径是由源时钟从它的源点(典型的是输入端口)到发送时序单元的时钟引脚之间的路径。对于从输入端口起始的时序路径来说,就不存在源时钟路径数据路径对内部电路,数据路径是发送时序单元和捕捉时序单元之间的路径发送时序单元的有效时钟管脚称为路径起始点捕捉时序单元的数据输入管脚称为路径结束点对于输入端口路径,数据路径起始于输入端口。输入端口是路径的起始点对于输出端口路径,数据路径结朿语输岀端口。输岀端口是路径的结束点。目标时钟路径目标时钟路径是由目标时钟从其源点(典型的是输入端口)到捕捉时序单元的时钟管脚之间的路径。对于结束于输出端口的时序路径,就没有目标时钟路径图3-2显示了3段典型的时序路径REGAData PathREGBEndpointSource Clock PathStartpointDestination Clock PathFigure 3-2: Typical Timing PathSetup和Hold分析vⅳ ado ide分析时序并且在时序路径终点时候报告时序裕量。时序裕量是指在时序路径终点数据要求时间和抵达时间的差异。如果裕量为正,从时序的角度考虑此路径是有效的。Setup检查为了计算数据所需的 setup时间,时序引擎:1.决定源时钟和目的时钟之间的普通周期。如果没有被发现,为分析考虑多达1000个时钟周期。2.检查覆盖普通周期上的起始点和终点所有上升和下降沿。3.在任何两个有效 active沿之间的最小正差值dela。这个deta被称为 setup分析的时序路径要求Setup路径要求示例假象2个寄存器之间的一条路径,这些寄存器由其相应时钟上升沿触发。这条路径有效的时钟沿只有上升沿。时钟定义如下:.clko周期6nsck1周期4nsCommon periodclko launch edgesSetup(1)Setup(2)clk1 capture edgesOns 2ns 4nss 8n5 10ns 12nsFigure 3-3: Setup Path Requirement Example图33显示有2个单独的源和目的时钟沿有资格受到 setup分析: setup(1和 setup(2):源时钟发送沿时间:0ns+1*T(ck0)=6ns目的时钟抓取沿时间:0ns+2*(ck1)=8nsSetup Path Requirement=抓取沿时间-发送沿时间=2ns在计算路径要求时候,需要考虑2个重要的点:1.时钟沿是理想的,那就是说,时钟树插入延迟不在考虑之内2.默认时钟在0时间点是 phase-aligned,除非他们的波形定义引进了 phase-shit。异步时钟相位关系未知。时序引擎在分析其间路径时候会考虑默认值。关于异步时钟的更多内容看下部分Setup分析数据要求时间Setup分析数据要求时间是指为了让目的单元能安全的采样数据,数据必须在这个时间点之前稳定。这个值基于:目的时钟采样沿时间.目地时钟延时源时钟和目的时钟的不确定性目的单元 setup时间Setup分析的数据抵达时间Setup分析的数据抵达时间,是指由源时钟发送的数据在路径终点的稳定时候所需要的时间。它的值基于:源时钟发送沿时间源时钟延时数据路径延时数据路径延时包括所有从起点到终点的单元(cel)和线(ne延时。在时序报告中, Vivado将 setup时序考虑为数据路径的一部分。相应的,数据到达和要求时间的公式为:Data Required Time (setup)= destination clock capture edge time+destination clock path delayclock uncertaintyData Arrival Time(setup)= source clock launch edge timesource clock path delay+ datapath delaysetup timeSetup裕量是指要求时间和实际抵达时间的差值:Slack (setup)= Data Required Time -Data Arrival Time在输入数据引脚寄存器上 Setup裕量为负值,说明寄存器有可能锁存到未知的值跳转到错误状态Hod检查Hod裕量的计算与 setup裕量计算直接相关。当 setup分析证明了在最悲观的情况下数据可以被安全捕捉,hold分析确保了:同样的数据不可能被前面目地时钟沿错误的抓取下一个源时钟沿发送的数据不能被用来分析 setup的目的数据沿抓取因此,为了找到hold分析的时序路径,时序引擎考虑了所有为 setup分析的源和目的时钟沿结合的可能。对每一种可能的组合,时序引擎:检查发送沿和减去一个目的时钟周期的抓取沿之间的差值.检查了加上一个源时钟周期的发送沿和抓取沿之间的差值.只保留时间差值最大的发送沿和抓取沿hold路径要求示例采用page33中 setup路径要求示例中的时钟。对于 setup分析那仅有2个可能的时钟沿组合:Setup Path Requirement (S1)=1*T(clk1)-0*T(clk0)= 4nsSetup Path Requirement (S2)=2*T(clk1)-1*T(clk0)=2ns那么相应的hod要求如下:For setup s1:Hold path Requirement (Hla)-(1*T(clk1)-1*T(clk1))-0*T(clko)=onsHold Path Requirement (Hlb)=1*T(clkl)-(0*T(clk0)+I*T(clko))=-2nsFor setup $2:Hold Path Requirement (H2a)=(2*T(clk1)-1*T(clk1))-1*T(clko)2nsHold path Requirement(H2b)=2*T(clk1)-(1*T(clk0)+1*T(clk0))=-4ns从上面可以看出最大的要求时间是Ons,这正好与源时钟和目的时钟第一次上升沿相吻合。Hold路径要求示例,page36显示了 setup检查沿和他们相关的hold检查。cIko launch edgesHla S1 H1b/H2a522bclk1 capture edgesOns 2ns 4ns 6ns 8ns 10ns 12nsFigure 3-4: Hold Path Requirement Example此例中,最终的hod要求时间不是来源于最紧的 setup要求。这是因为所有可能的 setup沿都会被考虑在内,是为了找到最又挑战性的hod要求。正如在 setup分析中,数据要求时间和数据抵达时间是基于以下条件计算的:源时钟发送沿时间.目的时钟抓取沿时间源和目的时钟延时时钟不确定性数据延时.目的寄存器hod时间Data Required Time (hold)= destination clock capture edge timedestination clock path delayclock uncertaintyData Arrival Time (hold)= source clock launch edge timesource clock path delaydatapath delayhold timeHod裕量是要求时间和抵达时间的差值Slack (hold)= Data Arrival Time Data Required Time正的时序裕量意味着即使在最悲观的情况下数据也不会被错误的时钟沿抓取。而负的hold裕量说明抓取的数据错误,而且寄存器可能进入不稳定状态。矫正( recovery和移除( removal分析矫正和移除时序检查与 setup和hold检查相似,区别就是它们应用于异步数据管脚例如set或者clear o对于异步复位的寄存器.矫正时间是异步 reset信号为了锁定新数据已经切换到它的无效状态之后,到下一个有效时钟沿之间的最小时间。移除时间是在异步复位信号安全切换到其无效状态之前,到第一个有效时钟沿之后的最小时间。下面的等式描述了这两种分析的sack是如何计算的Recovery check下面的等式描述了下面如何计算:Data Required Time (recovery ) =destination clock edge start time+ destination clock path delayclock uncertaintyData Arrival Time (recovery )= source clock edge start timesource clock path delaydatapath delayrecovery timeSlack (recovery)= Data Required Time Data Arrival TimeRemoval checkData Required Time (removal)= destination clock edge start timedestination clock path delayclock uncertaintyData Arrival Time (removal)= source clock edge start timesource clock path delay+ datapath delayremoval timeSlack (removal)= Data Arrival Time -Data Required Time正如 setup和hold检査,一个负的 recovery裕量和 remova裕量说明寄存器可能进入亚稳态,并且将未知的电子层带入设计中。定义时钟时钟数字设计中,时钟提供了从寄存器到寄存器之间可靠的传输数据的时间参考。 Vivado ide时序引擎用时钟特征来:计算时钟路径要求以裕量计算的方式报告设计时序裕量更多信息,参考时序分析这章为了得到最精确的最大的时序路径覆盖,时钟必须合理的定义。可以用下面的特征定义时钟:源时钟是指定义在时钟驱动引脚或者时钟树跟端口的时钟时钟沿可以由周期和波形特性的组合描述周期是ns级的,与描述的波形的时间周期相匹配.时钟波形是在时钟周期里,在数ns内时钟上升沿和下降沿绝对时间的列表列表必须包含偶数个值。第一个值一般与第一个上升沿吻合,除非另外指定,默认的时钟占空比是50%相位是ns。如图4-1所示,ck0周期10ns,占空比50%,相位0ns。Ck1周期8ns,占空比75%,相位2ns。CIkO: period 10, waveform =10 5]CIk1: period =8, waveform=2850%50%ClaOns5ns10ns15ns25%75%clkbOns 2ns8ns 10ns16nsFigure 4-1: Clock Waveforms Example传播【 propagated clock)时钟周期和波形特征体现了时钟的理想特征。当时钟进入FPGA器件并且经过时钟树传播时候,时钟沿会有延时而且会随着噪声和硬件特性而改变。这些特点被称为时钟网络延时( latency)和时钟不确定{ uncertainty)时钟不确定性包含下面内容:clock jitterphase error任何额外指定的不确定Vivado会默认的将时钟作为传播时钟,这意味着,这是非理想的时钟。这么做是为了提供包含时钟树插入延时和不确定性的裕量的值。特定硬件资源
    2021-05-06下载
    积分:1
  • 51单片机ISP 下载电路.pdf
    51单片机ISP 下载电路在使用单片机时必须的使用下载线,此文档里有次下载电路的详细的原理图和具体的参数。很好用!!!
    2021-05-06下载
    积分:1
  • AHRS姿态解算资料
    描述姿态解算三种方法 四元数 欧拉角法 方向余弦法 并结合卡尔曼滤波解算出姿态角
    2020-11-30下载
    积分:1
  • ARMA模型的详细介绍与举例
    详细介绍ARMA模型 里面不仅介绍了该模型的实际用法也进行了举例分析计算结果表明,时,预测的标准误差较小,所以选取=。预测第月份的销售收入为计算的程序如卜为移动平均的项数由于的取值不同,的长度不一致,下面使用了细胞数组简单移动平均法只這合做近期预测,而且是预测目标的发展趋势变化不人的情况如果目标的发展趋势存在其它的变化,米用简单移动屮均法就会产生较大的预测偏差和滞后。加权移动平均法在简单栘动平均公式中,每期数据在求平均时的作用是等同的。但是,每期数据所包含的信息量不样,近期数据包含着更多关于未来情况的信息。因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据给予较大的权重,这就是加权移动平均法的基本思想。设时间序列为加权移动平均公式为十·十∴+式中为期加权移动平均数;为的权数,它体现了相应的在加权平均数中的重要性。利用加权移动平均数来做预测,其预测公式为即以第期加权移动平均数作为第+期的预测值。例我国年原煤广量如表所示,试用加权移动平均法预测年的产量。表我国原煤产量统计数据及加权移动平均预测值表原煤产量三年加权移动平均预测值相对差(%)解取,按预测公式计算三年加权移动平均预测值,其结果列于表中。年我国原煤产量的预测值为(亿吨这个预测值偏低,可以修正。其方法是:先计算各年预测值与实际值的相对误差,例如年为将相对误差列于表中,再计算总的平均相对误差。由于总预测值的平均值比实际值低,所以可将年的预测值修正为计算的程序如下:在加权移动平均法中,的选择,同样具有一定的经验性。一般的原则是:近期数据的权效人,远期数据的权数小。至于人到什么稈度和小到什么程度,则需要按照预测者对序饥的了解和分析来确定。趋势移动平均法简单移动平均法和加权移动平均法,在时间序列没有明显的趋势变动时,能够准确反映实际情况。但当时间序列出现直线増加或减少的变动趋势时,用简单移动平均法和加权移动平均法来预测就会岀现滞后偏差。因此,需要进行修正,修正的方法是作二次移动平均,利用移动平均滞后偏差的规律米建立直线趋势的预测模型。这就是趋势移动平均法。次移动的平均数为+∴在一次移动平均的基础上再进行一次移动平均就是二次移动平均,其计算公式为D下面讨论如何利用移动平均的潛后偏差建立直线趋势预测模型。设时间序列从某时期开始具有直线趋势,且认为末来时期也按此直线趋势变化,则可设此直线趋势预测模型为其中为当前时期数;为由至预测期的时期数;为截距;为斜率。两者又称为平滑系数现在,我们根据移动平均值来确定平滑系数。由模型()可知所以+…十因此由式(),类似式()的推导,可得所以类似式()的推导,可得于是,由式()和式()可得平滑系数的计算公式为例我国年的发电总量如表所示,试预测和年的发电总量。表我国发电量及一、二次移动平均值计算表年份发电总量次移动平均二次移动平均,=解由散点图可以看出,发电总量基本呈直线上升趋势,可用趋势移动半均法来预测。图原始数据散点图取三,分别计算次和二次移动平均值并列于衣中。再由公式(),得于是,得时直线趋势预测模型为预测年和年的发电总量为计算的程序如下:把原始数据保存在纯文本文件中为移动平均的项数趋势移动平均法对于冋时存在直线趋势与厝期波动的序列,是种既能反映趋势变化,又可以有效地分离出来周期变动的方法。§指数半滑法次移动平均实际上认为最近期数据对未来值影响相同,都力权一;而期以前的数据对未来值没有影响,加权为。但是,二次及更高次移动平均数的权数却不是—,且次数越高,权数的结构越复杂,但永远保持对称的权数,即两端项权数小,中间项权薮大,不符合一般系统的动态性。一般说来历史数据对未来值的影响是随时间间隔的增长而递减的。所以,更切合实际的方法应是对各期观测值依时间顺序进行加权平均作为预测值。指数平滑法可满足这一要求,而且具有简单的递推形式指数平滑法根据平滑次数的不同,又分为一次指数平滑法、二次指数平滑法和三次指数平滑法等,分别介绍如下次指数平滑法.预测模型设时间序列为,a为加权系数,
    2020-12-05下载
    积分:1
  • 696516资源总数
  • 106457会员总数
  • 15今日下载