登录
首页 » 数据挖掘 » 朴素贝叶斯分类

朴素贝叶斯分类

于 2022-02-07 发布 文件大小:20.72 kB
0 309
下载积分: 2 下载次数: 3

代码说明:

朴素贝叶斯分类的分类器实现,使用的是matlab语言。内含测试集和训练集,可直接运行,readme.txt文件中说明了数据格式

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 朴素贝叶斯分类
    朴素贝叶斯分类的分类器实现,使用的是matlab语言。内含测试集和训练集,可直接运行,readme.txt文件中说明了数据格式
    2022-02-07 02:48:39下载
    积分:1
  • 关于大的相关论文
    关于大数据的论文,对稀疏表示分类有很大的帮助,希望对初学者哟帮助
    2022-02-06 00:21:30下载
    积分:1
  • 频繁项集算法--CFPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,CFPGROWTH算法,JAVA实现,代码中有详细注释
    2023-03-29 10:25:03下载
    积分:1
  • Ecalt算法
    Eclat算法是一种深度优先算法,采用垂直数据表示形式,在概念格理论的基础上利用基于前缀的等价关系将搜索空间(概念格)划分为较小的子空间(子概念格)。Eclat算法采用方法二计算支持度。对候选k项集进行支持度计算时,不需再次扫描数据库,仅在一次扫描数据库后得到每个1项集的支持度,而候选k项集的支持度就是在对k-1项集进行交集操作后得到的该k项集Tidset中元素的个数。本算法利用diffset数据格式实现。
    2022-03-02 17:06:13下载
    积分:1
  • 频繁项集算法--TWOPHASE算法
    数据挖掘经典算法,频繁项集挖掘经典算法,TWOPHASE算法,源码中有详细注释
    2022-10-13 14:30:03下载
    积分:1
  • k-means java实现 Iris四大
    通过优化的k-means算法 采用了密度和优化评测函数实现了对Iris等数据集的聚类。 
    2022-03-18 06:28:52下载
    积分:1
  • 决策树Java源代码
    资源描述决策树是建立在信息论基础之上,对数据进行分类挖掘的一种方法。其思想是,通过一批已知的训练数据建立一棵决策树,然后利用建好的决策树,对数据进行预测。决策树的建立过程可以看成是数据规则的生成过程。由于基于决策树的分类方法结构简单,本身就是人们能够理解的规则。其次,决策树方法计算复杂度不大,分类效率高,能够处理大数据量的训练集;最后,决策树方法的分类精度较高,对噪声数据有较好的健壮性,符合一般系统的要求。
    2022-03-12 14:04:11下载
    积分:1
  • 高效用项集算法--HMINE算法
    数据挖掘算法,高效用项集挖掘算法,加权频发项集挖掘算法,HMINE算法,源码中有详细注释
    2022-02-04 07:22:38下载
    积分:1
  • Java实现Apriori算法
    Java实现Apriori数据挖掘算法,包内还有实例用的数据库 Apriori数据挖掘算法:先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递归的方法。 请在jbuilder下编译 配好JDBC驱动 商品如果 买的表示为大写 没买表示为小写的 具体看GetSource.java
    2022-10-02 14:05:03下载
    积分:1
  • 频繁项集算法--FPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,FPGROWTH算法,源码中有详细说明
    2023-06-08 16:30:03下载
    积分:1
  • 696518资源总数
  • 105549会员总数
  • 12今日下载