-
BP神经网络解决异或问题
BP神经网络解决异或问题-BP neural network or problems to solve differences
- 2022-01-25 23:57:10下载
- 积分:1
-
用Fast BP实现复杂的函数逼近,对初学者有一定的帮助,是在BP的基础上增加了R....
用Fast BP实现复杂的函数逼近,对初学者有一定的帮助,是在BP的基础上增加了R.-Fast BP achieved with a complex function approximation, there is some help for beginners, is based on the BP increase in R.
- 2022-01-25 23:40:17下载
- 积分:1
-
BP神经网络的小应用。模拟0~1之间的三角函数曲线
BP神经网络的小应用。模拟0~1之间的三角函数曲线-BP neural network of small applications. Analog 0 to 1 between the trigonometric curve
- 2022-02-11 20:36:14下载
- 积分:1
-
This is a pattern recognition in a simple window parzen Category simulation exam...
这是一个模式识别中的parzen窗的一个简单仿真分类实例,其中female.txt和male.txt是训练样本,test.txt是测试样本,分类效果非常好,对于模式学习的初学者将会有很大帮助。-This is a pattern recognition in a simple window parzen Category simulation examples, one of female.txt and male.txt training samples, test.txt is the measurement, classification effect is very good for beginners will be learning model has very big help.
- 2022-05-17 23:57:33下载
- 积分:1
-
改进的量子搜索算法的论文,用于模式识别等方面
改进的量子搜索算法的论文,用于模式识别等方面-Quantum search algorithm to improve the paper for pattern recognition, etc.
- 2022-06-20 03:55:43下载
- 积分:1
-
使用线性分类器进行分类,采用感知器算法中的“奖惩算法”,各提取3类中的前25个样本共75个作为学习样本。...
使用线性分类器进行分类,采用感知器算法中的“奖惩算法”,各提取3类中的前25个样本共75个作为学习样本。-The use of a linear classifier for classification, perceptron algorithm using the reward and punishment algorithm , the extraction of 3 categories of the top 25 a total of 75 samples as the learning samples.
- 2022-02-13 11:34:06下载
- 积分:1
-
神 经 网 络 的 资 料
神 经 网 络 的 资 料-neural network data
- 2022-07-01 16:08:15下载
- 积分:1
-
This is a topic on the forefront of the current neural network learning procedur...
这是一个关于目前最前沿课题的神经网络学习模型的程序-xor-This is a topic on the forefront of the current neural network learning procedures for model-xor
- 2023-08-02 21:30:04下载
- 积分:1
-
matlab神经网络应用设计
matlab神经网络应用设计-Matlab neural network application design
- 2022-02-06 00:26:56下载
- 积分:1
-
标准PSO(粒子群)算法,matlab版
标准PSO(粒子群)算法,matlab版-standard PSO (PSO) algorithm, Matlab version
- 2022-07-22 00:09:20下载
- 积分:1