登录
首页 » WINDOWS » OTL_AIJ_code

OTL_AIJ_code

于 2020-10-28 发布 文件大小:34KB
0 261
下载积分: 1 下载次数: 14

代码说明:

  基于matlab实现的一个在线迁移学习算法OTL,(Based on matlab to achieve an online migration learning algorithm OTL,)

文件列表:

OTL_AIJ_code
OTL_AIJ_code\1. Classification
OTL_AIJ_code\1. Classification\1. Homogeneous
OTL_AIJ_code\1. Classification\1. Homogeneous\avePA1_K_M.m
OTL_AIJ_code\1. Classification\1. Homogeneous\data
OTL_AIJ_code\1. Classification\1. Homogeneous\data\create_OTL_ID.m
OTL_AIJ_code\1. Classification\1. Homogeneous\EObeta.m
OTL_AIJ_code\1. Classification\1. Homogeneous\EOC.m
OTL_AIJ_code\1. Classification\1. Homogeneous\Experiment_OTL_K_M.m
OTL_AIJ_code\1. Classification\1. Homogeneous\HomOTL1_K_M.m
OTL_AIJ_code\1. Classification\1. Homogeneous\HomOTL2_K_M.m
OTL_AIJ_code\1. Classification\1. Homogeneous\HomOTLf_K_M.m
OTL_AIJ_code\1. Classification\1. Homogeneous\PA1_K_M.m
OTL_AIJ_code\1. Classification\1. Homogeneous\PAIO_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous
OTL_AIJ_code\1. Classification\2. Heterogeneous\avePA1_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\data
OTL_AIJ_code\1. Classification\2. Heterogeneous\data\create_OTL_ID.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\Ensemble_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\EOC.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\Experiment_OTL_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\HetOTL0_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\HetOTL_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\PA1_K_M.m
OTL_AIJ_code\1. Classification\2. Heterogeneous\PAIO_K_M.m
OTL_AIJ_code\2. Concept Drift
OTL_AIJ_code\2. Concept Drift\CDOLfix_K_M.m
OTL_AIJ_code\2. Concept Drift\CDOL_K_M.m
OTL_AIJ_code\2. Concept Drift\data
OTL_AIJ_code\2. Concept Drift\data\create_CD_ID.m
OTL_AIJ_code\2. Concept Drift\EOC.m
OTL_AIJ_code\2. Concept Drift\Experiment_OTL_K_M.m
OTL_AIJ_code\2. Concept Drift\ModiPE_K_M.m
OTL_AIJ_code\2. Concept Drift\PA1_K_M.m
OTL_AIJ_code\2. Concept Drift\PE_K_M.m
OTL_AIJ_code\2. Concept Drift\ShiftPE_K_M.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • sklearn-tree-BN-knn
    说明:  分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • KNN01
    说明:  用来作分类识别的KNN算法,非常好用非常好用(A very useful nearest neighbor algorithm)
    2020-08-03 19:28:41下载
    积分:1
  • HMM-homework
    隐马尔科夫实现,包含forward-hmm, Viterbi-hmm, Baum-Welch-hmm(Hidden Markov implementation, including forward-hmm, Viterbi-hmm, Baum-Welch-hmm)
    2019-04-26 17:02:43下载
    积分:1
  • propospuionsview
    算法分析中的贪心算法的实现,并有完整的测试数据()
    2018-05-28 16:41:27下载
    积分:1
  • Binning算法
    数据挖掘中的binning算法,用于数据预处理(Binning algorithm in data mining for data preprocessing)
    2019-01-07 09:04:15下载
    积分:1
  • pu_ju_lei
    将数据集转换为拉普拉斯矩阵,然后利用基于图论的谱聚类进行聚类。拉普拉斯矩阵采用高斯核函数,全连接方法计算。谱聚类擅长处理高维数据或非凸数据集。(The data set is transformed into Laplacian matrix, and then clustered by spectral clustering based on graph theory. The Laplacian matrix is calculated by using the Gauss kernel function and the full connection method. Spectral clustering is good at dealing with high-dimensional or non-convex data sets.)
    2019-07-01 16:05:39下载
    积分:1
  • House_price
    主要是对二手房房价的因变量房价和其相关的因变量之间的关系进行简单的描述统计分析(Mainly for the second-hand house price dependent variable housing prices and its related variables of the relationship between the simple description of statistical analysis)
    2017-11-10 15:40:51下载
    积分:1
  • 分位回归
    说明:  多种方法实现分位数回归,有完整原理解释,直接可用。(Multiple methods for quantile regression)
    2020-03-03 14:37:14下载
    积分:1
  • Python for Data Analysis
    利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • HMM-homework
    说明:  隐马尔科夫实现,包含forward-hmm, Viterbi-hmm, Baum-Welch-hmm(Hidden Markov implementation, including forward-hmm, Viterbi-hmm, Baum-Welch-hmm)
    2019-04-26 17:02:43下载
    积分:1
  • 696516资源总数
  • 106442会员总数
  • 11今日下载