登录
首页 » matlab » ELM

ELM

于 2018-03-14 发布 文件大小:3947KB
0 349
下载积分: 1 下载次数: 11

代码说明:

  一种神经网络算法:极限学习机(ELM),包括分类和回归,仿真验证无误,适合初学者练习(A data mining algorithm: limit learning machine (ELM), including classification and regression, simulation verification is unmistakable, suitable for beginners to practice)

文件列表:

ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_diabetes.m, 2265 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_sinc.asv, 2298 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.asv, 9389 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.m, 9390 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM_diabetes.m, 874 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.asv, 2224 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.m, 2250 , 2013-10-03
ELM\ELMѧϰ\Basic ELM(for ELM with random hidden nodes)\elm.pdf, 460493 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\BP_sinc.m, 1481 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_test, 687 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_train, 2280 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM.m, 7862 , 2013-09-06
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM_sinc.m, 780 , 2013-10-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_test, 682 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_train, 2290 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_test, 681 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_train, 2302 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.asv, 2185 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.m, 2186 , 2013-09-14
ELM\ELMѧϰ\B_ELM\B-ELM.zip, 1341073 , 2013-10-05
ELM\ELMѧϰ\C_ELM\Compelx-ELM.zip, 377581 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_test, 19200 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_train, 57600 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\ELM_kernel_diabetes.m, 889 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\ELM_kernel_sinc.m, 795 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_test, 688 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_train, 2287 , 2013-10-05
ELM\ELMѧϰ\OS_ELM\OS-ELM\HardlimActFun.m, 209 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM.m, 7690 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM_VARY.m, 7778 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\RBFun.m, 287 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SigActFun.m, 211 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SinActFun.m, 199 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\oselm.pdf, 666139 , 2013-10-16
ELM\ELMѧϰ\SaDE_ELM\SaDE-ELM.rar, 4877 , 2013-10-05
ELM\ELMѧϰ\Weighted_ELM\Weighted-ELM.zip, 6993 , 2013-10-05
ELM\ELM学习\测试比较图.doc, 167936 , 2013-10-05
ELM\分类\ELMfenglei.m, 1741 , 2013-08-26
ELM\分类\elmpredict.m, 1454 , 2010-11-07
ELM\分类\elmtrain.m, 1752 , 2010-11-07
ELM\分类\iris.mat, 1059 , 2009-11-14
ELM\回归\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\ELM.m, 2298 , 2014-07-04
ELM\回归\elm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elm\elmtrain.m, 1752 , 2010-11-07
ELM\回归\ELMhuigui.m, 3444 , 2014-07-04
ELM\回归\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elmtrain.m, 1752 , 2010-11-07
ELM\回归\main.asv, 3194 , 2013-08-26
ELM\回归\psoelm\chejing.mat, 213954 , 2014-07-04
ELM\回归\psoelm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\psoelm\elmtrain.m, 3605 , 2014-07-04
ELM\回归\psoelm\fun.m, 1181 , 2014-07-04
ELM\回归\psoelm\PSOELM.m, 2391 , 2014-07-04
ELM\回归\psoelm.zip, 428805 , 2014-07-04
ELM\回归\spectra_data.mat, 171497 , 2010-10-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归, 0 , 2018-03-14
ELM\ELMѧϰ\OS_ELM\OS-ELM, 0 , 2018-03-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 中编写C语言程序预处理,读取文本文件中的,使用链表,并输出该组的按平均值、中值、边界值平滑的结果。若分箱时缺失则用最后的值复制代替,还要找出程序中
    数据挖掘中编写C语言程序数据预处理,读取文本文件中的数据,使用链表,并输出该组数据的按平均值、中值、边界值平滑的结果。若分箱时数据缺失则用最后的值复制代替,还要找出程序中的离群点,要求程序符合结构化程序设计风格,关键地方需加注释。完美实现!
    2022-02-28 20:00:10下载
    积分:1
  • rdqern
    脉动风速功率谱估计,并与标准风谱进行对比()
    2018-05-25 15:20:02下载
    积分:1
  • 机器学习实战
    说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)
    2021-02-21 23:11:22下载
    积分:1
  • Apriori-master
    用Apriori算法挖掘出入侵检测数据集KDD99的数据关联性,从而检测出未知的攻击(Apriori algorithm is used to extract the data association of the intrusion detection data set KDD99, and the unknown attack is detected)
    2021-04-21 21:58:49下载
    积分:1
  • Adaboost
    Python实现Adaboost算法,数据集为horseColic马疝气病数据集,准确率和sklearn库中的adaboost算法一样。(Python implementation adaboost algorithm, the data set is horseColic horse hernia disease data collection, accuracy and sklearn library adaboost the same algorithm.)
    2017-04-21 15:00:34下载
    积分:1
  • apcluster.m
    ap算法完成ap聚类操作 需要输入参数为数据集 偏向参数 输出结果为聚类数目(The AP algorithm completes the AP clustering operation, the input parameter is the data set bias parameter, and the output result is the number of clusters)
    2017-11-19 23:56:45下载
    积分:1
  • House_price
    主要是对二手房房价的因变量房价和其相关的因变量之间的关系进行简单的描述统计分析(Mainly for the second-hand house price dependent variable housing prices and its related variables of the relationship between the simple description of statistical analysis)
    2017-11-10 15:40:51下载
    积分:1
  • Spider_baiduvideo
    利用urllib.request进行爬虫, 下载百度视频页面的所有图片保存到本地(Use urllib.request for crawl. Download all the pictures from Baidu video page to local.)
    2018-04-02 18:32:19下载
    积分:1
  • test_lstm
    说明:  简单的LSTM进行预测,附带数据集方便测试(simple test of LSTM is used for prediction , and related datasets is attached in the file.)
    2020-08-30 16:28:10下载
    积分:1
  • debbgger
    三次样条插值的C语言算法,但是总是数据溢出()
    2018-05-27 05:33:39下载
    积分:1
  • 696516资源总数
  • 106405会员总数
  • 10今日下载