登录
首页 » matlab » ELM

ELM

于 2018-03-14 发布 文件大小:3947KB
0 338
下载积分: 1 下载次数: 11

代码说明:

  一种神经网络算法:极限学习机(ELM),包括分类和回归,仿真验证无误,适合初学者练习(A data mining algorithm: limit learning machine (ELM), including classification and regression, simulation verification is unmistakable, suitable for beginners to practice)

文件列表:

ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_diabetes.m, 2265 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_sinc.asv, 2298 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.asv, 9389 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.m, 9390 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM_diabetes.m, 874 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.asv, 2224 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.m, 2250 , 2013-10-03
ELM\ELMѧϰ\Basic ELM(for ELM with random hidden nodes)\elm.pdf, 460493 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\BP_sinc.m, 1481 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_test, 687 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_train, 2280 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM.m, 7862 , 2013-09-06
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM_sinc.m, 780 , 2013-10-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_test, 682 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_train, 2290 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_test, 681 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_train, 2302 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.asv, 2185 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.m, 2186 , 2013-09-14
ELM\ELMѧϰ\B_ELM\B-ELM.zip, 1341073 , 2013-10-05
ELM\ELMѧϰ\C_ELM\Compelx-ELM.zip, 377581 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_test, 19200 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_train, 57600 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\ELM_kernel_diabetes.m, 889 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\ELM_kernel_sinc.m, 795 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_test, 688 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_train, 2287 , 2013-10-05
ELM\ELMѧϰ\OS_ELM\OS-ELM\HardlimActFun.m, 209 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM.m, 7690 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM_VARY.m, 7778 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\RBFun.m, 287 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SigActFun.m, 211 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SinActFun.m, 199 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\oselm.pdf, 666139 , 2013-10-16
ELM\ELMѧϰ\SaDE_ELM\SaDE-ELM.rar, 4877 , 2013-10-05
ELM\ELMѧϰ\Weighted_ELM\Weighted-ELM.zip, 6993 , 2013-10-05
ELM\ELM学习\测试比较图.doc, 167936 , 2013-10-05
ELM\分类\ELMfenglei.m, 1741 , 2013-08-26
ELM\分类\elmpredict.m, 1454 , 2010-11-07
ELM\分类\elmtrain.m, 1752 , 2010-11-07
ELM\分类\iris.mat, 1059 , 2009-11-14
ELM\回归\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\ELM.m, 2298 , 2014-07-04
ELM\回归\elm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elm\elmtrain.m, 1752 , 2010-11-07
ELM\回归\ELMhuigui.m, 3444 , 2014-07-04
ELM\回归\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elmtrain.m, 1752 , 2010-11-07
ELM\回归\main.asv, 3194 , 2013-08-26
ELM\回归\psoelm\chejing.mat, 213954 , 2014-07-04
ELM\回归\psoelm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\psoelm\elmtrain.m, 3605 , 2014-07-04
ELM\回归\psoelm\fun.m, 1181 , 2014-07-04
ELM\回归\psoelm\PSOELM.m, 2391 , 2014-07-04
ELM\回归\psoelm.zip, 428805 , 2014-07-04
ELM\回归\spectra_data.mat, 171497 , 2010-10-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归, 0 , 2018-03-14
ELM\ELMѧϰ\OS_ELM\OS-ELM, 0 , 2018-03-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MqnieCarlo
    MonteCarlo仿真的C++源码,具有参考价值(C source code of MonteCarlo simulation, which has reference value)
    2018-08-03 21:25:08下载
    积分:1
  • 89245721
    说明:  
    2017-12-09 07:59:44下载
    积分:1
  • 妹子图
    通过Python对妹子图网站的图片集进行爬取(Crawling the collection of images on the sister map site via Python)
    2018-11-15 16:13:39下载
    积分:1
  • WDMAP6
    bp网络实现认知无线电的检测和预测,从而达到了对频谱的分配(Bp network realizes the detection and prediction of cognitive radio, thus achieving the spectrum allocation.)
    2018-09-06 15:06:37下载
    积分:1
  • project
    数据挖掘,推荐系统,堆叠降噪自编码器,逻辑回归(Data mining, recommender systems, stack noise reduction, self coder, logic regression)
    2021-01-25 23:58:43下载
    积分:1
  • 粗糙集
    说明:  粗糙集在进行属性约简时需要求其正域,此为求正域程序(Rough Set for Positive Domain)
    2020-06-19 09:00:06下载
    积分:1
  • Python预处理
    说明:  Python数据预处理示例,包括数据清洗、数据整合、数据变换等操作。(Python data preprocessing examples, including data cleaning, data integration, data transformation and other operations.)
    2020-09-17 14:07:54下载
    积分:1
  • MF-DFA-master
    多重分形去趋势波动分析法,用于不同时间序列的重分形交叉相关性分析。(Multifractal detrended fluctuation analysis)
    2018-09-06 14:29:01下载
    积分:1
  • QB模型 神经网络
    说明:  从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • Eigenfunction-Program-Program
    强大的计算电磁场本征函数与本征模的程序,matlab版本(A powerful Program for calculating the Eigenfunction and Eigenmode of electromagnetic Field)
    2018-09-11 22:56:16下载
    积分:1
  • 696518资源总数
  • 106161会员总数
  • 5今日下载