登录
首页 » matlab » 2555333

2555333

于 2018-03-15 发布 文件大小:1KB
0 324
下载积分: 1 下载次数: 1

代码说明:

  牛顿插值法,选择插值节点文件,有点小麻烦()

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Python预处理
    说明:  Python数据预处理示例,包括数据清洗、数据整合、数据变换等操作。(Python data preprocessing examples, including data cleaning, data integration, data transformation and other operations.)
    2020-09-17 14:07:54下载
    积分:1
  • TurbulentWindGenerator
    三维风场模拟.利用Kaimal spectrum结合FFT进行风场模拟,生成风速时程得进行必要参数的定义。(3D Turbulent Wind Generation。 Generation of three-dimensional turbulent wind fields, by employing a Kaimal spectrum and IEC-based coherence function. )
    2017-02-28 11:35:25下载
    积分:1
  • 0262842
    請用星號( )排列出下列的 p箭 星號 D案,輸入 Y料 ne txt中的第一行為箭 的上下高度(必為奇數),第二行為 D案的總寬度()
    2018-05-28 18:54:24下载
    积分:1
  • 频繁项集算法--FPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,FPGROWTH算法,源码中有详细说明
    2023-06-08 16:30:03下载
    积分:1
  • 小波包能量谱
    用于信号特征提取,提取信号的小波包能量谱(Extracting the wavelet packet energy spectrum of the signal)
    2020-06-27 01:40:01下载
    积分:1
  • 分位回归
    说明:  多种方法实现分位数回归,有完整原理解释,直接可用。(Multiple methods for quantile regression)
    2020-03-03 14:37:14下载
    积分:1
  • 带阻尼参的pagerank实现
    资源描述实现基本的pagerank算法,可实现传递阻尼参数和迭代次数。源文件从文件中读取
    2022-09-10 21:45:04下载
    积分:1
  • 贝叶斯网络 R语言实例 牛津大学
    说明:  R语言构建贝叶斯网络,很实用的讲解和案例(Construction of Bayesian network with R language, a very practical explanation and case)
    2020-06-19 18:26:44下载
    积分:1
  • Python for Data Analysis
    利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • python 实现随机森林
    应用背景 数据   :两个月之内 40000个客户的15个数据字段   包含客户的 地          理位置,职业,职级,年收入,。。。。。。    购买过得产品 目的:对新客户进行推荐一个适合该客户的产品, 对老客户推荐可能再购买的产品 数据处理    数据清洗:   describe 每个特征统计分析       方差     -分析缺陷特征和波动性                 空值赋值为  “-1 “              -  保证模型的可使用    数据归一化:eg:邮编 相似度不高 根据一线二线….进行划分  – 特征的重要性 关键技术特征选择    随机森林:  判断特征的重要性 :思考为何重要性高     AHP    :  迭代设置每个特征的权重 模型选择   :根据数据量数量,是否有标签,分类or回归选取 关于模型选择时候我想用协同过滤  但是不知道关于特征的协同过滤是怎么执行的   是每个特征都有一个评分构成评价矩阵么?
    2022-02-25 17:28:51下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载