登录
首页 » matlab » classification_toolbox

classification_toolbox

于 2020-03-10 发布
0 285
下载积分: 1 下载次数: 2

代码说明:

说明:  多种基本分类训练,包括支持向量机,偏最小二乘,主成分分析和线性分析(A variety of basic classification training, including support vector machine, partial least squares, principal component analysis and linear analysis)

文件列表:

classification_toolbox_5.2\calc_class_param.m, 3488 , 2018-11-21
classification_toolbox_5.2\calc_class_string.m, 3035 , 2018-12-20
classification_toolbox_5.2\calc_qt_limits.m, 2094 , 2018-11-21
classification_toolbox_5.2\calc_reg_param.m, 1790 , 2018-11-21
classification_toolbox_5.2\cartcv.m, 6467 , 2018-12-04
classification_toolbox_5.2\cartfit.m, 3719 , 2018-12-04
classification_toolbox_5.2\cartpred.m, 2328 , 2018-12-04
classification_toolbox_5.2\class_gui.fig, 46054 , 2018-11-14
classification_toolbox_5.2\class_gui.m, 119168 , 2019-01-08
classification_toolbox_5.2\dacompsel.m, 4696 , 2018-12-04
classification_toolbox_5.2\dacv.m, 8252 , 2018-12-04
classification_toolbox_5.2\dafit.m, 6789 , 2018-12-04
classification_toolbox_5.2\damultinormality.m, 3392 , 2018-11-21
classification_toolbox_5.2\dapred.m, 3786 , 2018-12-04
classification_toolbox_5.2\data_pretreatment.m, 2903 , 2018-12-04
classification_toolbox_5.2\help\classparameters.htm, 8300 , 2018-12-04
classification_toolbox_5.2\help\download.htm, 2182 , 2018-11-11
classification_toolbox_5.2\help\example.htm, 13402 , 2018-12-04
classification_toolbox_5.2\help\example_plsda_01.gif, 11262 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_02.gif, 5246 , 2016-01-29
classification_toolbox_5.2\help\example_plsda_03.gif, 10376 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_04.gif, 15034 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_05.gif, 20139 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_06.gif, 24757 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_07.gif, 26719 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_08.gif, 9991 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_09.gif, 10708 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_10.gif, 8197 , 2016-01-29
classification_toolbox_5.2\help\footer.htm, 586 , 2018-11-11
classification_toolbox_5.2\help\gui.htm, 7698 , 2018-11-26
classification_toolbox_5.2\help\gui_1.gif, 8972 , 2018-11-21
classification_toolbox_5.2\help\gui_2.gif, 8013 , 2016-01-29
classification_toolbox_5.2\help\gui_3.gif, 19682 , 2018-11-21
classification_toolbox_5.2\help\gui_4.gif, 18254 , 2018-11-21
classification_toolbox_5.2\help\gui_5.gif, 37173 , 2016-01-29
classification_toolbox_5.2\help\gui_6.gif, 15792 , 2018-11-21
classification_toolbox_5.2\help\gui_7.gif, 48375 , 2018-11-22
classification_toolbox_5.2\help\gui_8.gif, 38618 , 2018-11-22
classification_toolbox_5.2\help\gui_9.gif, 25954 , 2018-11-22
classification_toolbox_5.2\help\gui_calculate.htm, 15964 , 2018-11-26
classification_toolbox_5.2\help\gui_file.htm, 3731 , 2018-11-21
classification_toolbox_5.2\help\gui_predict.htm, 4709 , 2018-11-21
classification_toolbox_5.2\help\gui_results.htm, 14486 , 2018-12-04
classification_toolbox_5.2\help\gui_view.htm, 6159 , 2018-11-21
classification_toolbox_5.2\help\header.htm, 1104 , 2018-11-21
classification_toolbox_5.2\help\index.htm, 4433 , 2018-11-21
classification_toolbox_5.2\help\license.htm, 3592 , 2018-11-21
classification_toolbox_5.2\help\logo_milano_chemometrics.jpg, 9422 , 2016-01-29
classification_toolbox_5.2\help\math_formula_accuracy.gif, 1195 , 2016-01-29
classification_toolbox_5.2\help\math_formula_confmat.gif, 3146 , 2016-01-29
classification_toolbox_5.2\help\math_formula_er.gif, 646 , 2016-01-29
classification_toolbox_5.2\help\math_formula_ner.gif, 1025 , 2016-01-29
classification_toolbox_5.2\help\math_formula_nk.gif, 616 , 2016-01-29
classification_toolbox_5.2\help\math_formula_precision.gif, 559 , 2016-01-29
classification_toolbox_5.2\help\math_formula_sensitivity.gif, 567 , 2016-01-29
classification_toolbox_5.2\help\math_formula_specificity.gif, 1171 , 2016-01-29
classification_toolbox_5.2\help\math_formula_wilks.gif, 554 , 2016-01-29
classification_toolbox_5.2\help\menu_lateral.htm, 2422 , 2018-11-21
classification_toolbox_5.2\help\references.htm, 5067 , 2018-11-21
classification_toolbox_5.2\help\releases.htm, 9284 , 2018-11-21
classification_toolbox_5.2\help\routines.htm, 7614 , 2018-12-04
classification_toolbox_5.2\help\style_structure.css, 671 , 2016-01-29
classification_toolbox_5.2\help\style_tables.css, 992 , 2016-01-29
classification_toolbox_5.2\help\style_text.css, 2919 , 2016-01-29
classification_toolbox_5.2\help\theory.htm, 21221 , 2018-12-04
classification_toolbox_5.2\help\web.htm, 3655 , 2018-11-11
classification_toolbox_5.2\help.htm, 1116 , 2018-11-22
classification_toolbox_5.2\knnclass.m, 2087 , 2018-11-21
classification_toolbox_5.2\knncv.m, 7771 , 2018-12-04
classification_toolbox_5.2\knnfit.m, 5026 , 2018-12-04
classification_toolbox_5.2\knnksel.m, 4783 , 2018-12-04
classification_toolbox_5.2\knnpred.m, 4446 , 2018-12-04
classification_toolbox_5.2\knn_calc_dist.m, 3841 , 2018-11-21
classification_toolbox_5.2\make_test.m, 3503 , 2018-11-21
classification_toolbox_5.2\mypls.m, 4426 , 2008-10-02
classification_toolbox_5.2\pca_model.m, 3962 , 2018-12-04
classification_toolbox_5.2\pca_project.m, 2564 , 2018-11-21
classification_toolbox_5.2\plsdacompsel.m, 4554 , 2018-12-04
classification_toolbox_5.2\plsdacv.m, 8201 , 2018-12-04
classification_toolbox_5.2\plsdafindclass.m, 1972 , 2018-11-21
classification_toolbox_5.2\plsdafindthr.m, 3236 , 2018-11-21
classification_toolbox_5.2\plsdafit.m, 7931 , 2018-12-04
classification_toolbox_5.2\plsdapred.m, 4254 , 2018-12-04
classification_toolbox_5.2\potcalc.m, 2178 , 2018-11-21
classification_toolbox_5.2\potcv.m, 9456 , 2018-12-04
classification_toolbox_5.2\potfindclass.m, 1993 , 2018-11-21
classification_toolbox_5.2\potfit.m, 5984 , 2018-12-04
classification_toolbox_5.2\potpred.m, 3102 , 2018-12-04
classification_toolbox_5.2\potsmootsel.m, 5634 , 2018-12-04
classification_toolbox_5.2\readme.txt, 3413 , 2018-12-04
classification_toolbox_5.2\redo_scaling.m, 2297 , 2018-11-21
classification_toolbox_5.2\sediment.mat, 107841 , 2018-11-15
classification_toolbox_5.2\simcacompsel.m, 4555 , 2018-12-04
classification_toolbox_5.2\simcacv.m, 8581 , 2019-02-13
classification_toolbox_5.2\simcafindclass.m, 2077 , 2018-11-21
classification_toolbox_5.2\simcafindthr.m, 2720 , 2018-11-21
classification_toolbox_5.2\simcafit.m, 8275 , 2019-02-13
classification_toolbox_5.2\simcapred.m, 4328 , 2019-02-13
classification_toolbox_5.2\svmcostsel.m, 6034 , 2018-12-04
classification_toolbox_5.2\svmcv.m, 8599 , 2018-12-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • YTCVI47
    徐士良《C常用算法程序集》第2版 第2部分()
    2018-02-05 12:36:49下载
    积分:1
  • 98598152
    实现通用的matlab蚁群算法的c++源码 重复使用度高()
    2018-07-05 18:01:35下载
    积分:1
  • 海杂波
    说明:  处理ipix官网下载的雷达原始数据,将方位角以及俯仰角进行处理(Processing radar raw data downloaded from IPIX official website)
    2021-04-14 09:38:55下载
    积分:1
  • OTL_AIJ_code
    基于matlab实现的一个在线迁移学习算法OTL,(Based on matlab to achieve an online migration learning algorithm OTL,)
    2020-10-28 21:29:57下载
    积分:1
  • GWR4操作说明
    GWR能够实现地理加权回归计算,里面有GWR4操作说明,虽然是英文,但有图片介绍,很容易理解,是GWR模型入门的好工具,适合经济学、数据挖掘等人员使用(GWR can realize geographically weighted regression calculation, including GWR4 operation instructions. Although it is in English, it has pictures to introduce, and is easy to understand. It is a good tool for GWR model entry. It is suitable for personnel such as economics and data mining.)
    2018-03-16 17:17:11下载
    积分:1
  • PLSR程序
    说明:  偏最小二乘回归!PLSR,可用于解决一些回归问题!(Partial least squares regression! PLSR can be used to solve some regression problems!)
    2019-11-29 20:42:27下载
    积分:1
  • holt_winters
    holt-winters 三次指数平滑算法,时间序列预测算法,带测试数据及Demo(Triple Order Exponential Smoothing, Holt-Winters algorithm, time series prediction algorithm with test data and Demo)
    2016-10-10 18:57:02下载
    积分:1
  • znsbudk
    人工智能中,经典的基于小波变换的图像处理和图像去噪的解决办法,可下载后观摩使用(In artificial intelligence, the classical image processing and image denoising based on wavelet transform can be downloaded and used)
    2018-09-04 02:06:36下载
    积分:1
  • 中编写C语言程序预处理,读取文本文件中的,使用链表,并输出该组的按平均值、中值、边界值平滑的结果。若分箱时缺失则用最后的值复制代替,还要找出程序中
    数据挖掘中编写C语言程序数据预处理,读取文本文件中的数据,使用链表,并输出该组数据的按平均值、中值、边界值平滑的结果。若分箱时数据缺失则用最后的值复制代替,还要找出程序中的离群点,要求程序符合结构化程序设计风格,关键地方需加注释。完美实现!
    2022-02-28 20:00:10下载
    积分:1
  • autoencoder_v1
    用于数据自编码,非线性压缩,降维的一种方法;与PCA不同,pca为线性降维方式(Data auto encoding, nonlinear compression)
    2018-08-02 20:07:50下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载