登录
首页 » matlab » classification_toolbox

classification_toolbox

于 2020-03-10 发布
0 253
下载积分: 1 下载次数: 2

代码说明:

说明:  多种基本分类训练,包括支持向量机,偏最小二乘,主成分分析和线性分析(A variety of basic classification training, including support vector machine, partial least squares, principal component analysis and linear analysis)

文件列表:

classification_toolbox_5.2\calc_class_param.m, 3488 , 2018-11-21
classification_toolbox_5.2\calc_class_string.m, 3035 , 2018-12-20
classification_toolbox_5.2\calc_qt_limits.m, 2094 , 2018-11-21
classification_toolbox_5.2\calc_reg_param.m, 1790 , 2018-11-21
classification_toolbox_5.2\cartcv.m, 6467 , 2018-12-04
classification_toolbox_5.2\cartfit.m, 3719 , 2018-12-04
classification_toolbox_5.2\cartpred.m, 2328 , 2018-12-04
classification_toolbox_5.2\class_gui.fig, 46054 , 2018-11-14
classification_toolbox_5.2\class_gui.m, 119168 , 2019-01-08
classification_toolbox_5.2\dacompsel.m, 4696 , 2018-12-04
classification_toolbox_5.2\dacv.m, 8252 , 2018-12-04
classification_toolbox_5.2\dafit.m, 6789 , 2018-12-04
classification_toolbox_5.2\damultinormality.m, 3392 , 2018-11-21
classification_toolbox_5.2\dapred.m, 3786 , 2018-12-04
classification_toolbox_5.2\data_pretreatment.m, 2903 , 2018-12-04
classification_toolbox_5.2\help\classparameters.htm, 8300 , 2018-12-04
classification_toolbox_5.2\help\download.htm, 2182 , 2018-11-11
classification_toolbox_5.2\help\example.htm, 13402 , 2018-12-04
classification_toolbox_5.2\help\example_plsda_01.gif, 11262 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_02.gif, 5246 , 2016-01-29
classification_toolbox_5.2\help\example_plsda_03.gif, 10376 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_04.gif, 15034 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_05.gif, 20139 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_06.gif, 24757 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_07.gif, 26719 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_08.gif, 9991 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_09.gif, 10708 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_10.gif, 8197 , 2016-01-29
classification_toolbox_5.2\help\footer.htm, 586 , 2018-11-11
classification_toolbox_5.2\help\gui.htm, 7698 , 2018-11-26
classification_toolbox_5.2\help\gui_1.gif, 8972 , 2018-11-21
classification_toolbox_5.2\help\gui_2.gif, 8013 , 2016-01-29
classification_toolbox_5.2\help\gui_3.gif, 19682 , 2018-11-21
classification_toolbox_5.2\help\gui_4.gif, 18254 , 2018-11-21
classification_toolbox_5.2\help\gui_5.gif, 37173 , 2016-01-29
classification_toolbox_5.2\help\gui_6.gif, 15792 , 2018-11-21
classification_toolbox_5.2\help\gui_7.gif, 48375 , 2018-11-22
classification_toolbox_5.2\help\gui_8.gif, 38618 , 2018-11-22
classification_toolbox_5.2\help\gui_9.gif, 25954 , 2018-11-22
classification_toolbox_5.2\help\gui_calculate.htm, 15964 , 2018-11-26
classification_toolbox_5.2\help\gui_file.htm, 3731 , 2018-11-21
classification_toolbox_5.2\help\gui_predict.htm, 4709 , 2018-11-21
classification_toolbox_5.2\help\gui_results.htm, 14486 , 2018-12-04
classification_toolbox_5.2\help\gui_view.htm, 6159 , 2018-11-21
classification_toolbox_5.2\help\header.htm, 1104 , 2018-11-21
classification_toolbox_5.2\help\index.htm, 4433 , 2018-11-21
classification_toolbox_5.2\help\license.htm, 3592 , 2018-11-21
classification_toolbox_5.2\help\logo_milano_chemometrics.jpg, 9422 , 2016-01-29
classification_toolbox_5.2\help\math_formula_accuracy.gif, 1195 , 2016-01-29
classification_toolbox_5.2\help\math_formula_confmat.gif, 3146 , 2016-01-29
classification_toolbox_5.2\help\math_formula_er.gif, 646 , 2016-01-29
classification_toolbox_5.2\help\math_formula_ner.gif, 1025 , 2016-01-29
classification_toolbox_5.2\help\math_formula_nk.gif, 616 , 2016-01-29
classification_toolbox_5.2\help\math_formula_precision.gif, 559 , 2016-01-29
classification_toolbox_5.2\help\math_formula_sensitivity.gif, 567 , 2016-01-29
classification_toolbox_5.2\help\math_formula_specificity.gif, 1171 , 2016-01-29
classification_toolbox_5.2\help\math_formula_wilks.gif, 554 , 2016-01-29
classification_toolbox_5.2\help\menu_lateral.htm, 2422 , 2018-11-21
classification_toolbox_5.2\help\references.htm, 5067 , 2018-11-21
classification_toolbox_5.2\help\releases.htm, 9284 , 2018-11-21
classification_toolbox_5.2\help\routines.htm, 7614 , 2018-12-04
classification_toolbox_5.2\help\style_structure.css, 671 , 2016-01-29
classification_toolbox_5.2\help\style_tables.css, 992 , 2016-01-29
classification_toolbox_5.2\help\style_text.css, 2919 , 2016-01-29
classification_toolbox_5.2\help\theory.htm, 21221 , 2018-12-04
classification_toolbox_5.2\help\web.htm, 3655 , 2018-11-11
classification_toolbox_5.2\help.htm, 1116 , 2018-11-22
classification_toolbox_5.2\knnclass.m, 2087 , 2018-11-21
classification_toolbox_5.2\knncv.m, 7771 , 2018-12-04
classification_toolbox_5.2\knnfit.m, 5026 , 2018-12-04
classification_toolbox_5.2\knnksel.m, 4783 , 2018-12-04
classification_toolbox_5.2\knnpred.m, 4446 , 2018-12-04
classification_toolbox_5.2\knn_calc_dist.m, 3841 , 2018-11-21
classification_toolbox_5.2\make_test.m, 3503 , 2018-11-21
classification_toolbox_5.2\mypls.m, 4426 , 2008-10-02
classification_toolbox_5.2\pca_model.m, 3962 , 2018-12-04
classification_toolbox_5.2\pca_project.m, 2564 , 2018-11-21
classification_toolbox_5.2\plsdacompsel.m, 4554 , 2018-12-04
classification_toolbox_5.2\plsdacv.m, 8201 , 2018-12-04
classification_toolbox_5.2\plsdafindclass.m, 1972 , 2018-11-21
classification_toolbox_5.2\plsdafindthr.m, 3236 , 2018-11-21
classification_toolbox_5.2\plsdafit.m, 7931 , 2018-12-04
classification_toolbox_5.2\plsdapred.m, 4254 , 2018-12-04
classification_toolbox_5.2\potcalc.m, 2178 , 2018-11-21
classification_toolbox_5.2\potcv.m, 9456 , 2018-12-04
classification_toolbox_5.2\potfindclass.m, 1993 , 2018-11-21
classification_toolbox_5.2\potfit.m, 5984 , 2018-12-04
classification_toolbox_5.2\potpred.m, 3102 , 2018-12-04
classification_toolbox_5.2\potsmootsel.m, 5634 , 2018-12-04
classification_toolbox_5.2\readme.txt, 3413 , 2018-12-04
classification_toolbox_5.2\redo_scaling.m, 2297 , 2018-11-21
classification_toolbox_5.2\sediment.mat, 107841 , 2018-11-15
classification_toolbox_5.2\simcacompsel.m, 4555 , 2018-12-04
classification_toolbox_5.2\simcacv.m, 8581 , 2019-02-13
classification_toolbox_5.2\simcafindclass.m, 2077 , 2018-11-21
classification_toolbox_5.2\simcafindthr.m, 2720 , 2018-11-21
classification_toolbox_5.2\simcafit.m, 8275 , 2019-02-13
classification_toolbox_5.2\simcapred.m, 4328 , 2019-02-13
classification_toolbox_5.2\svmcostsel.m, 6034 , 2018-12-04
classification_toolbox_5.2\svmcv.m, 8599 , 2018-12-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • clegnup-cyclic-prefix
    Random Number Generators随机数生成包括gaussian random number gener(Random Number Generators random number generation includes gaussian random number gene)
    2018-08-03 22:46:10下载
    积分:1
  • 传递熵传递时间计算
    计算传递熵延迟时间的程序,根据延迟对应最大传递熵的原理(A program for calculating the delay time of transfer entropy)
    2017-11-28 09:13:45下载
    积分:1
  • 用python 做的网络爬虫
    说明:  用python 做的网络数据爬虫,爬取淘宝数据,并分析。(Use Python to do the network data crawler, crawl the Taobao data, and analyze.)
    2020-02-25 18:34:31下载
    积分:1
  • knn.py
    kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。(Basic source application)
    2018-10-30 16:50:13下载
    积分:1
  • MSA
    说明:  自动生成Excel表格,包括测量系统分析MSA GR&R--均值极差法 ,方差分析,均值极差(Automatic generation of Excel tables, including measurement system analysis MSA GR&R - mean extreme difference method, variance analysis, mean extreme difference)
    2019-06-20 21:24:10下载
    积分:1
  • kaggle叶子分类
    利用一维卷积神经网络将叶子进行分类,里面包含的有数据(Classification of leaves using one dimensional convolution neural network)
    2018-07-12 20:41:43下载
    积分:1
  • DBSCAN
    Clustering the data with Density-Based Scan Algorithm with Noise (DBSCAN)
    2017-05-02 22:36:20下载
    积分:1
  • python 实现随机森林
    应用背景 数据   :两个月之内 40000个客户的15个数据字段   包含客户的 地          理位置,职业,职级,年收入,。。。。。。    购买过得产品 目的:对新客户进行推荐一个适合该客户的产品, 对老客户推荐可能再购买的产品 数据处理    数据清洗:   describe 每个特征统计分析       方差     -分析缺陷特征和波动性                 空值赋值为  “-1 “              -  保证模型的可使用    数据归一化:eg:邮编 相似度不高 根据一线二线….进行划分  – 特征的重要性 关键技术特征选择    随机森林:  判断特征的重要性 :思考为何重要性高     AHP    :  迭代设置每个特征的权重 模型选择   :根据数据量数量,是否有标签,分类or回归选取 关于模型选择时候我想用协同过滤  但是不知道关于特征的协同过滤是怎么执行的   是每个特征都有一个评分构成评价矩阵么?
    2022-02-25 17:28:51下载
    积分:1
  • LOF
    基于密度的局部离群点检测,使用于当全部样本点的密度不一致的情况(Local outlier detection based on density)
    2021-04-14 16:28:55下载
    积分:1
  • Social-Networks-PPT-a-R
    主要内容为R语言环境下的社交网络数据挖掘,附有源代码和数据,并包含案例所使用的PPT和相关文献。(The main content is under R locales social network data mining, with the source code and data, and includes cases PPT and related documentation used.)
    2020-11-25 11:19:32下载
    积分:1
  • 696518资源总数
  • 105595会员总数
  • 1今日下载