登录
首页 » matlab » classification_toolbox

classification_toolbox

于 2020-03-10 发布
0 295
下载积分: 1 下载次数: 2

代码说明:

说明:  多种基本分类训练,包括支持向量机,偏最小二乘,主成分分析和线性分析(A variety of basic classification training, including support vector machine, partial least squares, principal component analysis and linear analysis)

文件列表:

classification_toolbox_5.2\calc_class_param.m, 3488 , 2018-11-21
classification_toolbox_5.2\calc_class_string.m, 3035 , 2018-12-20
classification_toolbox_5.2\calc_qt_limits.m, 2094 , 2018-11-21
classification_toolbox_5.2\calc_reg_param.m, 1790 , 2018-11-21
classification_toolbox_5.2\cartcv.m, 6467 , 2018-12-04
classification_toolbox_5.2\cartfit.m, 3719 , 2018-12-04
classification_toolbox_5.2\cartpred.m, 2328 , 2018-12-04
classification_toolbox_5.2\class_gui.fig, 46054 , 2018-11-14
classification_toolbox_5.2\class_gui.m, 119168 , 2019-01-08
classification_toolbox_5.2\dacompsel.m, 4696 , 2018-12-04
classification_toolbox_5.2\dacv.m, 8252 , 2018-12-04
classification_toolbox_5.2\dafit.m, 6789 , 2018-12-04
classification_toolbox_5.2\damultinormality.m, 3392 , 2018-11-21
classification_toolbox_5.2\dapred.m, 3786 , 2018-12-04
classification_toolbox_5.2\data_pretreatment.m, 2903 , 2018-12-04
classification_toolbox_5.2\help\classparameters.htm, 8300 , 2018-12-04
classification_toolbox_5.2\help\download.htm, 2182 , 2018-11-11
classification_toolbox_5.2\help\example.htm, 13402 , 2018-12-04
classification_toolbox_5.2\help\example_plsda_01.gif, 11262 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_02.gif, 5246 , 2016-01-29
classification_toolbox_5.2\help\example_plsda_03.gif, 10376 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_04.gif, 15034 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_05.gif, 20139 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_06.gif, 24757 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_07.gif, 26719 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_08.gif, 9991 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_09.gif, 10708 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_10.gif, 8197 , 2016-01-29
classification_toolbox_5.2\help\footer.htm, 586 , 2018-11-11
classification_toolbox_5.2\help\gui.htm, 7698 , 2018-11-26
classification_toolbox_5.2\help\gui_1.gif, 8972 , 2018-11-21
classification_toolbox_5.2\help\gui_2.gif, 8013 , 2016-01-29
classification_toolbox_5.2\help\gui_3.gif, 19682 , 2018-11-21
classification_toolbox_5.2\help\gui_4.gif, 18254 , 2018-11-21
classification_toolbox_5.2\help\gui_5.gif, 37173 , 2016-01-29
classification_toolbox_5.2\help\gui_6.gif, 15792 , 2018-11-21
classification_toolbox_5.2\help\gui_7.gif, 48375 , 2018-11-22
classification_toolbox_5.2\help\gui_8.gif, 38618 , 2018-11-22
classification_toolbox_5.2\help\gui_9.gif, 25954 , 2018-11-22
classification_toolbox_5.2\help\gui_calculate.htm, 15964 , 2018-11-26
classification_toolbox_5.2\help\gui_file.htm, 3731 , 2018-11-21
classification_toolbox_5.2\help\gui_predict.htm, 4709 , 2018-11-21
classification_toolbox_5.2\help\gui_results.htm, 14486 , 2018-12-04
classification_toolbox_5.2\help\gui_view.htm, 6159 , 2018-11-21
classification_toolbox_5.2\help\header.htm, 1104 , 2018-11-21
classification_toolbox_5.2\help\index.htm, 4433 , 2018-11-21
classification_toolbox_5.2\help\license.htm, 3592 , 2018-11-21
classification_toolbox_5.2\help\logo_milano_chemometrics.jpg, 9422 , 2016-01-29
classification_toolbox_5.2\help\math_formula_accuracy.gif, 1195 , 2016-01-29
classification_toolbox_5.2\help\math_formula_confmat.gif, 3146 , 2016-01-29
classification_toolbox_5.2\help\math_formula_er.gif, 646 , 2016-01-29
classification_toolbox_5.2\help\math_formula_ner.gif, 1025 , 2016-01-29
classification_toolbox_5.2\help\math_formula_nk.gif, 616 , 2016-01-29
classification_toolbox_5.2\help\math_formula_precision.gif, 559 , 2016-01-29
classification_toolbox_5.2\help\math_formula_sensitivity.gif, 567 , 2016-01-29
classification_toolbox_5.2\help\math_formula_specificity.gif, 1171 , 2016-01-29
classification_toolbox_5.2\help\math_formula_wilks.gif, 554 , 2016-01-29
classification_toolbox_5.2\help\menu_lateral.htm, 2422 , 2018-11-21
classification_toolbox_5.2\help\references.htm, 5067 , 2018-11-21
classification_toolbox_5.2\help\releases.htm, 9284 , 2018-11-21
classification_toolbox_5.2\help\routines.htm, 7614 , 2018-12-04
classification_toolbox_5.2\help\style_structure.css, 671 , 2016-01-29
classification_toolbox_5.2\help\style_tables.css, 992 , 2016-01-29
classification_toolbox_5.2\help\style_text.css, 2919 , 2016-01-29
classification_toolbox_5.2\help\theory.htm, 21221 , 2018-12-04
classification_toolbox_5.2\help\web.htm, 3655 , 2018-11-11
classification_toolbox_5.2\help.htm, 1116 , 2018-11-22
classification_toolbox_5.2\knnclass.m, 2087 , 2018-11-21
classification_toolbox_5.2\knncv.m, 7771 , 2018-12-04
classification_toolbox_5.2\knnfit.m, 5026 , 2018-12-04
classification_toolbox_5.2\knnksel.m, 4783 , 2018-12-04
classification_toolbox_5.2\knnpred.m, 4446 , 2018-12-04
classification_toolbox_5.2\knn_calc_dist.m, 3841 , 2018-11-21
classification_toolbox_5.2\make_test.m, 3503 , 2018-11-21
classification_toolbox_5.2\mypls.m, 4426 , 2008-10-02
classification_toolbox_5.2\pca_model.m, 3962 , 2018-12-04
classification_toolbox_5.2\pca_project.m, 2564 , 2018-11-21
classification_toolbox_5.2\plsdacompsel.m, 4554 , 2018-12-04
classification_toolbox_5.2\plsdacv.m, 8201 , 2018-12-04
classification_toolbox_5.2\plsdafindclass.m, 1972 , 2018-11-21
classification_toolbox_5.2\plsdafindthr.m, 3236 , 2018-11-21
classification_toolbox_5.2\plsdafit.m, 7931 , 2018-12-04
classification_toolbox_5.2\plsdapred.m, 4254 , 2018-12-04
classification_toolbox_5.2\potcalc.m, 2178 , 2018-11-21
classification_toolbox_5.2\potcv.m, 9456 , 2018-12-04
classification_toolbox_5.2\potfindclass.m, 1993 , 2018-11-21
classification_toolbox_5.2\potfit.m, 5984 , 2018-12-04
classification_toolbox_5.2\potpred.m, 3102 , 2018-12-04
classification_toolbox_5.2\potsmootsel.m, 5634 , 2018-12-04
classification_toolbox_5.2\readme.txt, 3413 , 2018-12-04
classification_toolbox_5.2\redo_scaling.m, 2297 , 2018-11-21
classification_toolbox_5.2\sediment.mat, 107841 , 2018-11-15
classification_toolbox_5.2\simcacompsel.m, 4555 , 2018-12-04
classification_toolbox_5.2\simcacv.m, 8581 , 2019-02-13
classification_toolbox_5.2\simcafindclass.m, 2077 , 2018-11-21
classification_toolbox_5.2\simcafindthr.m, 2720 , 2018-11-21
classification_toolbox_5.2\simcafit.m, 8275 , 2019-02-13
classification_toolbox_5.2\simcapred.m, 4328 , 2019-02-13
classification_toolbox_5.2\svmcostsel.m, 6034 , 2018-12-04
classification_toolbox_5.2\svmcv.m, 8599 , 2018-12-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • FDXD-CPML
    FDTD three-dimensional CPML
    2018-09-06 15:38:10下载
    积分:1
  • 最近邻分类代码
    在linux 下C语言实现最近邻聚类算法,工程已经使用(near K neighbor cluster)
    2017-12-21 16:45:51下载
    积分:1
  • BIC确定GMM聚类簇
    说明:  通过贝叶斯信息准则确定高斯混合聚类方法的聚类簇数(Determining the Cluster Number of GMM Clusters by BIC)
    2021-03-26 19:19:13下载
    积分:1
  • Python for Data Analysis
    利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • knn.py
    kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。(Basic source application)
    2018-10-30 16:50:13下载
    积分:1
  • 贝叶斯网络 R语言实例 牛津大学
    说明:  R语言构建贝叶斯网络,很实用的讲解和案例(Construction of Bayesian network with R language, a very practical explanation and case)
    2020-06-19 18:26:44下载
    积分:1
  • python分析 韩波
    一本python数据分析的优秀资料 《python数据分析》(python data analysis),作者【印尼】Ivan Idris,翻译:韩波。 本人制作的PDF图书,带目录和书签。 作为一种高级程序设计语言,Python凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言。同时,Python语言的数据分析功能也逐渐为大众所认可。, 本书是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组、matplotlib和pandas开始,陆续介绍了数据加工、数据处理和数据可视化等内容。同时,本书还介绍了信号处理、数据库、文本分析、机器学习、互操作性和性能优化等高级主题。在本书的结尾,还采用3个附录的形式为读者补充了一些重要概念、常用函数以及在线资源等重要内容。, 本书示例丰富、简单易懂,非常适合对Python语言感兴趣或者想要使用Python语言进行数据分析的读者参考阅读。(python data analysis)
    2018-09-08 10:45:20下载
    积分:1
  • Tensor-Factorization-HOSVD-iterative-master
    hosvd 迭代分解,很好用,是一个硕士论文里的代码(terative HOSVD algorithm to decompose tensor and find its Singular factors in each mode.)
    2021-03-27 11:39:12下载
    积分:1
  • 15082012
    求解矩阵的最大最小特征值及对应的特征向量,以及计算条件数()
    2020-08-31 01:18:10下载
    积分:1
  • QB模型 神经网络
    说明:  从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • 696516资源总数
  • 106457会员总数
  • 15今日下载