6),可分别用000.001、010、011、100、101对“A,E,R,T,F,D”进行编码发送,当对方接收报文时再按照三位一分进行译码显然编码的长度取决报文中不同字符的个数,若报文中可能出现26个不同字符,则固定编码长度为5(2=32>26).然而,传送报文时总是希望总长度尽可能短.在实际应用中,各个字符的出现频度或使用次数是不相同的,如A、B、C的使用频率远远高于X、Y、7,自然会想到设计编码时,让使用频率高的用短码,使用频率低的用长码,以优化整个报文编码.为使不等长编码为前缀编码(即要求一个字符的编码不能是另一个字符編码的前缀),可用字符集中的每个宇符作为叶子结点生成一棵编码二叉树,为了获得传送报文的最短长度,可将每个字符的岀现频率作为字符结烹的权值赋予该结点上,显然字使用频率越小权值越小,权值越小叶子就越靠下,于是颎率小编码长,频率高编码短,这样就保证了此树的最小带权路径长度,效果上就是传送报文的最短长度.因此,求传送报文的最短长度问题转化为求由字符集中的所有字符作为叶子结点,由字符出现频率作为其权值所产生的Hman树的问题.利用Hultman树设计的二进制前缀編码,称为LuminaL编码,它既能满足前缀编码的条件,又能保证报文编码总长最短本文将介绍的word2ve工具中也将用到Huffman编码,它把训练语料中的词当成叶子缩点,其在语料中出现的次数当作权值,通过构造相应的Huttman树来对每一个词进行Huffman编码图3给岀了例2.1中六个词的Huffman编码,其中约定(词频较大的)左孩子结点编码为1,(词频较小的)石孩子编码为θ.这惮一米,“我”、“喜欢”、“观看”、“巴西”、“足球”、“世界杯”这六个词的Huffman编码分别为0.111,110,101,1001和10000我告欢巴匹0足球图3Huffman编码示意图注意,到目前为止,关于Huttman树和Huttman編码,有两个约定:(1)将权值大的结点作为左孩子结点,权值小的作为右孩子结点(2)左孩子结点编码为1,右孩子结点编码为0.在word2vec源码中将权值较大的孩子结点编码为1,较小的孩子结点编码为0.为与上述约定统一起见,下文中提到的“左孩了结点"都是指权值较大的孩了结点83背景知识word2vec是用来生成词向量的工具,而词向量与语言模型有着密切的关系,为此,不妨先了解一些语言模型方面的知识83.1统计语言模型当今的互联网迅猛发展,每天都在产生大量的文本、图片、语音和视频数据,要对这些数据进行处理并从中挖掘岀有价值的信息,离不开自然语言处理(NatureLanguageprocessing,NP)技术,其中统计语言模型(Statisticallanguagemodel)就是很重要的一环,它是所有NLP的基础,被广泛应用于语音识别、机器翻译、分词、词性标注和信息检索等任务.例.1在语音识别糸统中,对于给定的语音段Vire,霄要找到一个使概率p(TertVoice最大的文本段Tert.利用Bayes公式,有P(Teatvoice)p(VoiceText).p(Textp(Voice)其中p(CicetE.c)为声学模型,而elEct)为语言模型(18])简单地说统计语言模型是用来计算一个句子的概率的概率模驷,它通常基于一个语料库来构建.那什么叫做一个句子的概率呢?假设W=m1:=(m1,2,…,mr)表示由T个词,2,……,按顺序构成的一个句子,则1,c2…,w的联合慨率p()=p(x1)=p(01,t2,…,r)就是这个句子的概率利用Bayes公式,上式可以被链式地分解为p(uh)-p(1)·p(u2lu1)p(u3lu2)…p(wru-1),(3.1)其中的(条件)概率p(1),p(2t1),p(un),…,p(mr1-)就是语言模型的参数,若这些参数已经全部算得,那么给定一个句子U1,就可以很快地算出相应的p(1)了看起来奷像很简单,是吧?但是,具体实现起来还是有点麻烦.例如.先来看看模型参数的个数.剛刚才是考虑一个给定的长度为T的句子,就需要计算T个参数.不妨假设语料库对应词典D的大小(即词汇量)为N,那么,如果考虑长度为T的任意句子,理论上就有M种可能.而每种可能都要计算T个参数,总共就需要计算TN7个参数.当然,这里只是简单估算,并没有考虑重复参数,但这个量级还是有蛮吓人.此外,这些概率计算好后,还得保存下来,因此,存储这些信息乜需要很大的內存开销此外,这些参数如何计算呢?常见的方法有n-gram模型、决策树、最大熵模型、最大熵马尔科夫模型、条件随机场、神经网络等方法,本文只讨论n-gram模型和神经网络两种方法.首先来看看n-gram模型-IMDN开发者社群-imdn.cn"> 6),可分别用000.001、010、011、100、101对“A,E,R,T,F,D”进行编码发送,当对方接收报文时再按照三位一分进行译码显然编码的长度取决报文中不同字符的个数,若报文中可能出现26个不同字符,则固定编码长度为5(2=32>26).然而,传送报文时总是希望总长度尽可能短.在实际应用中,各个字符的出现频度或使用次数是不相同的,如A、B、C的使用频率远远高于X、Y、7,自然会想到设计编码时,让使用频率高的用短码,使用频率低的用长码,以优化整个报文编码.为使不等长编码为前缀编码(即要求一个字符的编码不能是另一个字符編码的前缀),可用字符集中的每个宇符作为叶子结点生成一棵编码二叉树,为了获得传送报文的最短长度,可将每个字符的岀现频率作为字符结烹的权值赋予该结点上,显然字使用频率越小权值越小,权值越小叶子就越靠下,于是颎率小编码长,频率高编码短,这样就保证了此树的最小带权路径长度,效果上就是传送报文的最短长度.因此,求传送报文的最短长度问题转化为求由字符集中的所有字符作为叶子结点,由字符出现频率作为其权值所产生的Hman树的问题.利用Hultman树设计的二进制前缀編码,称为LuminaL编码,它既能满足前缀编码的条件,又能保证报文编码总长最短本文将介绍的word2ve工具中也将用到Huffman编码,它把训练语料中的词当成叶子缩点,其在语料中出现的次数当作权值,通过构造相应的Huttman树来对每一个词进行Huffman编码图3给岀了例2.1中六个词的Huffman编码,其中约定(词频较大的)左孩子结点编码为1,(词频较小的)石孩子编码为θ.这惮一米,“我”、“喜欢”、“观看”、“巴西”、“足球”、“世界杯”这六个词的Huffman编码分别为0.111,110,101,1001和10000我告欢巴匹0足球图3Huffman编码示意图注意,到目前为止,关于Huttman树和Huttman編码,有两个约定:(1)将权值大的结点作为左孩子结点,权值小的作为右孩子结点(2)左孩子结点编码为1,右孩子结点编码为0.在word2vec源码中将权值较大的孩子结点编码为1,较小的孩子结点编码为0.为与上述约定统一起见,下文中提到的“左孩了结点"都是指权值较大的孩了结点83背景知识word2vec是用来生成词向量的工具,而词向量与语言模型有着密切的关系,为此,不妨先了解一些语言模型方面的知识83.1统计语言模型当今的互联网迅猛发展,每天都在产生大量的文本、图片、语音和视频数据,要对这些数据进行处理并从中挖掘岀有价值的信息,离不开自然语言处理(NatureLanguageprocessing,NP)技术,其中统计语言模型(Statisticallanguagemodel)就是很重要的一环,它是所有NLP的基础,被广泛应用于语音识别、机器翻译、分词、词性标注和信息检索等任务.例.1在语音识别糸统中,对于给定的语音段Vire,霄要找到一个使概率p(TertVoice最大的文本段Tert.利用Bayes公式,有P(Teatvoice)p(VoiceText).p(Textp(Voice)其中p(CicetE.c)为声学模型,而elEct)为语言模型(18])简单地说统计语言模型是用来计算一个句子的概率的概率模驷,它通常基于一个语料库来构建.那什么叫做一个句子的概率呢?假设W=m1:=(m1,2,…,mr)表示由T个词,2,……,按顺序构成的一个句子,则1,c2…,w的联合慨率p()=p(x1)=p(01,t2,…,r)就是这个句子的概率利用Bayes公式,上式可以被链式地分解为p(uh)-p(1)·p(u2lu1)p(u3lu2)…p(wru-1),(3.1)其中的(条件)概率p(1),p(2t1),p(un),…,p(mr1-)就是语言模型的参数,若这些参数已经全部算得,那么给定一个句子U1,就可以很快地算出相应的p(1)了看起来奷像很简单,是吧?但是,具体实现起来还是有点麻烦.例如.先来看看模型参数的个数.剛刚才是考虑一个给定的长度为T的句子,就需要计算T个参数.不妨假设语料库对应词典D的大小(即词汇量)为N,那么,如果考虑长度为T的任意句子,理论上就有M种可能.而每种可能都要计算T个参数,总共就需要计算TN7个参数.当然,这里只是简单估算,并没有考虑重复参数,但这个量级还是有蛮吓人.此外,这些概率计算好后,还得保存下来,因此,存储这些信息乜需要很大的內存开销此外,这些参数如何计算呢?常见的方法有n-gram模型、决策树、最大熵模型、最大熵马尔科夫模型、条件随机场、神经网络等方法,本文只讨论n-gram模型和神经网络两种方法.首先来看看n-gram模型 - IMDN开发者社群-imdn.cn">
登录
首页 » Others » word2vec_中的数学原理详解

word2vec_中的数学原理详解

于 2020-12-04 发布
0 196
下载积分: 1 下载次数: 1

代码说明:

word2vec_中的数学原理详解个人收集电子书,仅用学习使用,不可用于商业用途,如有版权问题,请联系删除!wordzvec中的数学hoty@163.com2014年7月目录前言2预备知识2.1 sigmoid函数2.2逻辑回归3 Bayes公式2.4 Huffman编码,,,,,,,,524.1Humu树242 Huttman树的构造62.4.3 Huffman编码..,.3背景知识3.1统计语言模3.2n-gram模型103.3神经概率语言模型123.4词向量的理解4基于 Hierarchical softmanⅹ的模型41CBOW模型..191.1.1网络结构41.2梯度计算201.2 Skip-gram模型42.1网络结构42.2梯度计算255基于 Negative sampling的模型285.1CBOW模型285.2 Skip-gram模型53负采样算法326若干源码细节346.1a(x)的近似计算62词典的存储63换行符3564低频词和高频词366.5窗口及上下文3766自应学习率3767参数初始化与训练386.8多线程并行3869几点疑问和思考11m3881前言word2vec是 Google于2013年开源推出的一个用于获取 word vector的工具包,它简单、高效,因此引起了很多人的关注,由于word2vec的作者 Tomas nikolov在两篇相关的论文(,[4)中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟第一次接触word2ve是2013年的10月份,当时读了复且大学郑骁庆老师发表的论文7,其主要工作是将SENA的那套算法(8])搬到中文场景.觉得挺有意思,于是做了一个实现(可参见[20),但苦于其中字向量的训练时间太长,便选择使用word2we来提供字向量,没想到中文分词效果还不错,立马对word2vec刮目相看了一把,好奇心也随之增长后来.陆陆续续看到∫word2ve的一些具体应用,而 lomas nikolov团队本身也将其推广到了句子和文档(),因此觉得确实有必要对word2vec里的算法原理做个了解,以便对他们的后续研究进行追踪.于是,沉下心来,仔细读了一回代码,算是基本搞明臼里面的做法了.筼一个感觉就是,“明明是个很简单的浅层结构,为什么被那么多人沸沸扬扬地说成是Decp Learning呢?”解剖word2vec溟代码的过程中,除了算法层面的收获,其实编程技巧方面的收获乜颇多.既然花了功夫来读代码,还是把理解到的东西整理成文,给有需要的朋友提供点参考吧在整理本文的过程中,和深度学习群的群友北流浪子(15,16)进行了多次有益的讨论在比表示感谢另外,也参考了其他人的一些资料,鄱列在参考文献了,在此对他们的工作也并表示感谢2预备知识本节介绍word2vee中将用到的些重要知识点,包括 sigmoid函数、 Beyes公式和Huffman编码等821 sigmoid函数sigmoid函数是神经网络中常用的激活函数之一,其定义为1+e该函数的定义域为(-x,+x),值域为(0,1).图1给出了 sigmoid函数的图像0.5图1 sigmoid函数的图像sigmoid数的导函数具有以下形式)=0(x)1-0(x)由此易得,函数logo(a)和log(1-0(x)的导函数分别为log o(a)(21)公式(2.1)在后面的推寻中将用到822逻辑回归生活中经常会碰到二分类问题,例如,某封电子邮件是否为垃圾邮件,某个客户是否为在客户,某次在线交易是舌仔在诈行为,等等.设{(x,)}1为一个二分类问题的样本数据,其中x∈R",∈{0,1},当1=1时称相应的样本为正例,当v=0时称相应的样本为负例利用 sigmoid函数,对于任意样木x=(x1,x2,…,xn),可将二分类问题的 hypothesis函数写成h(x)=0(o+61x1+622+…+nxn),其中0=(0o,01,…,O)为待定参数.为了符号上简化起见,引入x0=1将x扩展为(x0,x1,x2,…,xrn)},且在不引起混淆的情况下仍将其记为ⅹ.于是,he可简写为取阀值T-0.5,则二分类的判别公式为1,b(x)≥0.5y(x0.5那参数θ如何求呢?通常的做法是,先确定一个形如下式的整体损失函数∑co(x,v)然后对其进行优化,从而得到最优的參数θ实际应用中,单个样本的损失函数cost(x,)常取为对数似然函数cosl(xi, yi)),v-1;(1-(x),v=0注意,上式是一个分段函数,也可将其写成如下的整体表达式cost(x2,3)=·log(ho(x)(1y1)·log(1h(x)323 Baves公式贝叶斯公式是英国数学家贝叶斯( Thomas Bayes)提出来的,用来描述两个条件概率之间的关系.若记P(A),P(B)分别表示事件A和事件B发生的概率,P(AB)我示事件B发生的情况下事件4发生的慨率P(A,B)表示事A.B同时发生的概率.则有P(AB)P(B), P(BLA)=P(A, B)P(A, B利用上式,进一步可得P(B AP(AB)-P(A)P(B)这就是 Bayes公式g2.4 Huffman编码本节简单介绍Humn编码(具体内容主要来白百度百F的词条.[10),为此,首先介绍Huffman树的定义及其构造算法§24.1 Huffman树在计算机科学中,树是一种重要的非线性数据结构,它是数据元素(在树中称为结点)按分支关系组织起来的结构.若干棵互不相交的树所构成的集合称为森林.下面给出几个与树相关的常用概念·路径和路径长度在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层号为1,则从根结点到第L层结虑的路径长度为L-1●结点的权和带权路径长度若为树中结点赋予一个具有某种含义的(非负)数值,则这个数值称为该结点的权结点的带权路径长度是指,从根结点到该结点之间的路径长度亐该结点的杈的乘矾·树的带权路径长度树的带权路径长度规定为所有叶子结点的带权路径长度之和二叉树是每个结点最多有两个子树的有序树.两个子树通常被称为“左子树”和“右子树”,定义中的“有序”是指两个子树有左石之分,顺序不能颠倒给定n个权值作为n个叶子结点,树造一棵二叉树,若它的带权路径长度达到最小,则称这样的二叉树为最优二叉树,也称为 Huffman树82.4.2 Huffman树的构造给定m个权值{mn,m2;…,mn}作为二叉树的m个叶子结点,可通过以下算法来构造颗 Huffman树算法2.Ⅰ(Hu「man树构造算法)(1)将{1,2,……,wn}看成是有n棵树的表林(每树仅有一个结点)2)在森林中选出两个根结,的权值最小的树合并,作为-棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和〔3)从森林中燜除选取的两樑树,并将新树加入森林(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求的 luffman树接下来,给出算法2.1的一个具体实例例2.1假设2114年世界杯期间,从新浪毀博中抓取了若干条与足球相关的微博,经统计,“我”、“喜欢”、“观看”、“巴西”、“足球”、“世界杯”这六个词岀现的次薮分别为15,8,6,5,3,1.请以这6个词为叶子结点,以相应词频当权值,构造一棵Hu∥n树.⊙Q⑨Q⊙只66如→只只③⊙图2 Huffman树的构造过程利用算法.,易知其枃造过程如国g所示,团中第六步给出了最终的 Hutman树,由囚可见词频越大的词离根结点越近构造过程中,通过合并新増的结点被标记为黄色.由于每两个结点邡要进行一次合并,因此,若叶子结点的个数为η,刘枃造的H們πω树中新増结点的个数为π-1.本例中n6,因此新增结,的个数为5注意,前面有捉到,二叉树的丙个子树是分左右的,对于某个非叶子结点来说,就是其两个孩子结点是分左右的,在本例中,统一将词频大的结点作为左孩子结点,词频小的作为右孩子结点当然,这只昃一个约定:你要将词頻大的结点作为右孩子结点也浸有问题§24.3 Huffman编码在数据通倍中,需要将传送的文宁转换成二进制的字符串,用0,1码的不同排列米表示字符.例如,需传送的报文为“A上 TER DATA EAR ARE ART AREA”,这里用到的字符集为“A,E,R,T,F,D”,各字母出现的次数为84,5,3,1,1,现要求为这些字母设计编码要区别6个字母,最简单的二进制编码方式是等长编码,固定采用3位二进制(23=8>6),可分别用000.001、010、011、100、101对“A,E,R,T,F,D”进行编码发送,当对方接收报文时再按照三位一分进行译码显然编码的长度取决报文中不同字符的个数,若报文中可能出现26个不同字符,则固定编码长度为5(2=32>26).然而,传送报文时总是希望总长度尽可能短.在实际应用中,各个字符的出现频度或使用次数是不相同的,如A、B、C的使用频率远远高于X、Y、7,自然会想到设计编码时,让使用频率高的用短码,使用频率低的用长码,以优化整个报文编码.为使不等长编码为前缀编码(即要求一个字符的编码不能是另一个字符編码的前缀),可用字符集中的每个宇符作为叶子结点生成一棵编码二叉树,为了获得传送报文的最短长度,可将每个字符的岀现频率作为字符结烹的权值赋予该结点上,显然字使用频率越小权值越小,权值越小叶子就越靠下,于是颎率小编码长,频率高编码短,这样就保证了此树的最小带权路径长度,效果上就是传送报文的最短长度.因此,求传送报文的最短长度问题转化为求由字符集中的所有字符作为叶子结点,由字符出现频率作为其权值所产生的Hman树的问题.利用 Hultman树设计的二进制前缀編码,称为 LuminaL编码,它既能满足前缀编码的条件,又能保证报文编码总长最短本文将介绍的word2ve工具中也将用到 Huffman编码,它把训练语料中的词当成叶子缩点,其在语料中出现的次数当作权值,通过构造相应的 Huttman树来对每一个词进行Huffman编码图3给岀了例2.1中六个词的 Huffman编码,其中约定(词频较大的)左孩子结点编码为1,(词频较小的)石孩子编码为θ.这惮一米,“我”、“喜欢”、“观看”、“巴西”、“足球”、“世界杯”这六个词的 Huffman编码分别为0.111,110,101,1001和10000我告欢巴匹0足球图3 Huffman编码示意图注意,到目前为止,关于 Huttman树和 Huttman編码,有两个约定:(1)将权值大的结点作为左孩子结点,权值小的作为右孩子结点(2)左孩子结点编码为1,右孩子结点编码为0.在word2vec源码中将权值较大的孩子结点编码为1,较小的孩子结点编码为0.为与上述约定统一起见,下文中提到的“左孩了结点"都是指权值较大的孩了结点83背景知识word2vec是用来生成词向量的工具,而词向量与语言模型有着密切的关系,为此,不妨先了解一些语言模型方面的知识83.1统计语言模型当今的互联网迅猛发展,每天都在产生大量的文本、图片、语音和视频数据,要对这些数据进行处理并从中挖掘岀有价值的信息,离不开自然语言处理( Nature Language processing,NP)技术,其中统计语言模型( Statistical language model)就是很重要的一环,它是所有NLP的基础,被广泛应用于语音识别、机器翻译、分词、词性标注和信息检索等任务.例.1在语音识别糸统中,对于给定的语音段Vire,霄要找到一个使概率p( TertVoice最大的文本段Tert.利用 Bayes公式,有P(Teat voice)p(VoiceText). p(Textp(Voice)其中p( CicetE.c)为声学模型,而 elEct)为语言模型(18])简单地说统计语言模型是用来计算一个句子的概率的概率模驷,它通常基于一个语料库来构建.那什么叫做一个句子的概率呢?假设W=m1:=(m1,2,…,mr)表示由T个词,2,……,按顺序构成的一个句子,则1,c2…,w的联合慨率p()=p(x1)=p(01,t2,…,r)就是这个句子的概率利用 Bayes公式,上式可以被链式地分解为p(uh)-p(1)·p(u2lu1)p(u3lu2)…p( wru-1),(3.1)其中的(条件)概率p(1),p(2t1),p(un),…,p(mr1-)就是语言模型的参数,若这些参数已经全部算得,那么给定一个句子U1,就可以很快地算出相应的p(1)了看起来奷像很简单,是吧?但是,具体实现起来还是有点麻烦.例如.先来看看模型参数的个数.剛刚才是考虑一个给定的长度为T的句子,就需要计算T个参数.不妨假设语料库对应词典D的大小(即词汇量)为N,那么,如果考虑长度为T的任意句子,理论上就有M种可能.而每种可能都要计算T个参数,总共就需要计算TN7个参数.当然,这里只是简单估算,并没有考虑重复参数,但这个量级还是有蛮吓人.此外,这些概率计算好后,还得保存下来,因此,存储这些信息乜需要很大的內存开销此外,这些参数如何计算呢?常见的方法有n-gram模型、决策树、最大熵模型、最大熵马尔科夫模型、条件随机场、神经网络等方法,本文只讨论n-gram模型和神经网络两种方法.首先来看看 n-gram模型

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Eharts地图扩展所有县级geoJson数据
    Echarts在扩展地图的时候很难找县级geoJson数据,花了半个月时间终于将中国所有县级和省级数据转化成了geoJson标准数据。在Echarts中能直接用。
    2021-05-06下载
    积分:1
  • 实用的风力发电机模型及风电场详细仿真模型
    实用的风力发电机模型及风电场详细仿真模型
    2020-11-28下载
    积分:1
  • MODIS 1B数据下载、常用处理软件、ENVI处理方法介绍(图解详细)
    MODIS 1B数据的下载网址和下载方法介绍、常用的处理软件下载地址、用MRTSwath和ENVI对MODIS 1B数据进行几何校正、DN值转换反射率、镶嵌和重投影处理过程详解,每一步都附有图解,非常详细实用!
    2020-06-26下载
    积分:1
  • matlab运动模糊图像复原 实验报告
    matlab运动模糊图像复原matlab运动模糊图像复原matlab运动模糊图像复原matlab运动模糊图像复原matlab运动模糊图像复原
    2021-05-06下载
    积分:1
  • NFC_身份证读取
    文档+代码,读取身份证UID方法和技术指导,熟悉NFC协议的专业人士可以下载,小白就不要凑热闹了。
    2020-12-07下载
    积分:1
  • 物流网络选址与路径优化的模型与启发式解法
    物流网络选址与路径优化问题的模型与启发式解法120交通运输工程学报2006年(i∈T)(10表1小规模问题的计算结果Tab. 1 Computation result of smalF-scaled problem(xh+xbk)-z≤1(i∈T,∈Ck∈K)(11)最优解∈TUC(j∈C问题规模目标值运行时间/s(12)NG= 3, NT=3, Nc= 83885k≤s1(≤c1121=∑体k∈(13NG=3,Nr=3,Nc=10421.221U-U+Nx≤N-1(i,∈S,k∈K)(14)NG=3,Nr=3,Nc=126850580∈TNG=3,NT=3,Nc=148741162000注:Nc为供应商数量,Nr为配送中心数量,Nc为客户数量ba≤B(g∈G)(16用启发式算法求得初期解xi∈/Q1(i,j∈T∪C,k∈K)(17)l0;∈/0,1∈T(18通过交换配送中心间的路径进行第1次解的改善∈/O,1∈T,j∈C)(19)yk∈/0,1(i∈C,k∈K)(20)通过交换同一路径中客户的位置(2-OPT法)进行第2次解的改善式中:G为供应商的集合;T为配送中心的集合;C为客户的集合;K为车辆的集合;Qk为车辆k的最通过交换不同路径中的客户进行第3次解的改善大载质量:S为C的部分集合;C为从点到点j的距离;B为供应商g的最大供应量;V为配送中心SA模块的最大货物通过量;D,为客户j的需求量;H2为配送中心i的固定费用;L为从供应商g到配送中是否满足终止条件心i的单位运输费用;Fk为车辆k的固定费用;a为解的输出与通过量有关的系数;xk为对于车辆k,如果点i以后的访问点是点j,即为1,否则为0;y为如果点j图1基于SA的混合启发式算法的货物由车辆k配送,即为1,否则为0;v;为如果FiMixed heuristic algorit hm based on sa使用配送中心i,即为1,否则为0;z为如果客户j传统启发式算法与智能启发式算法相结合的混合算由配送中心提供服务,即为1,否则为0;pa为从供法,以期在短时间内求得全局最优解应商g到配送中心的供应量。其中x、3计算分析和pg为决策变量。2问题的求解为了对SA的参数进行设定,进行了预备实验并确定参数如下:初始温度To为200冷却率α为为了验证上述数学模型的正确性,用数理规划07,与温度相关的循环次数调整参数β为.1,最商用软件 LINGO8.0对小规模问题进行了数值计大循环次数将按照问题规模的大小做适当的设定,算,结果见表1。可以看出,随着问题的规模扩大,数据采用人工生成数据,在200km×200km的区计算时间急剧增加;当客户达到14个时,计算时间域内随机生成指定个数的供应商、配送中心和客户,长达45h,显然无法满足解决现实问题的需要。为并生成距离矩阵和客户需求量;采用C语言编程,了满足解决现实问题的需要,有必要开发岀一种能计算结果见表2。从表2中的结果比较可以看出,够在合理的时间内求得准最优解的近似算法。表2最优解与近似解比较传统启发式算法能够在短时间内求得局部最优Tab 2 Comparison of optimal solution and approxi mate solution解,但往往容易陷于局部最优,而无法求得全局最优最优解近似解问题规模解。智能启发式算法能够求得全局最优解,但计算时目标值运行时间/s目标值运行时间/s%间相对较长。如果能够将两者结合起来,既可以防止N=3N=3,Nc=838533965求解过程陷于局部搜索无法跳出,保证全局解的搜3N=3NG=10+2122112100索,又可以缩短搜索时间达到在短时间内求得全局N-3-3Nc12|60s0620110最优解的目的。基于上述考虑本文提出了图1的将ublishrigfoustAingnsestrvcu,trttp/www.urrhi.rctNG=3,Nr=3,Nc=1487411620008895第3期陈松岩,等:物流网络选址与路径优化问题的模型与启发式解法121本算法求得的近似解与 LINGO80计算的最优解心,再从配送中心到客户这一典型的物流过程,涉及之间的误差很小,但计算时间却大大缩短了。依据运输与配送2个阶段和供应商、配送中心和客户3结果虽然无法判定所提岀的混合启发式算法对于大个层次,提出了多供应商、多物流中心情况下的物流规模问题的有效性,但可以看岀,对于求解小规模问路径与配送路径优化问题,给岀了问题的数学模型,题是有效和良好的。对于大规模问题,将利用实例利用传统启发式算法与模拟退火法开发了混合近似进行计算验证。解法,通过人工生成数据和实例计算验证,可以看出4应用实例所提出的数学模型可以准确地描述此类问题,具有良好的适应性,所提出的混合近似解法能够在短时在应用实例中,将港口作为供应商来考虑,以进间内求解问题并得到接近于最优解的近似解,具有口货物从港口经配送中心配送到客户过程中发生的较高的实用价值。但本模型没有考虑库存问题与供费用最小化为目的,以港口的数量和位置、配送中心应商的成本问题,无法达到物流网络中各个环节的数量和位置作为对象进行优化。实例的区域选择山整体优化,有待于今后进一步研究。东省,候选港口为天津港、烟台港、威海港、青岛港参考文献日照港和连云港等6处,候选配送中心设置于山东省除港口城市以外的13个地级市,设定客户分别位References于90个县(包括县级市)。为了分析候选港口和配1 I anen g Flpo C. Spatial de composit ion for a multI送中心的数量及位置与目标值之间的关系,在计算of Production Economics, 2000, 64(1/2/3): 177186过程中,候选港口和配送中心的数量分别从1开始(21 Melkote s, Das kin m s. a n in te grated model of facil ity loca tion增加(港口的位置为随机选择),计算结果见图2、3and transportat ion netw ork design[ J. Transport ation Research part A,2001,35(6):5155386[3] Goets chalckx M, Vidal C J Dogan K Modeling and design ofglobal logistics s yst ems: a review of integrated strat e gic an dt act ical models and design algorithm s[ J European Journal of005◇◇0◇◇◇◇◇◇◇Operat ional Research, 2002, 143 (1):118135791113[4] H wang H S Design of suppl y chain logist ics sy stem con sider-港口数量配送中心数量ing service level[ J. Computers and Industrial Engineerin g,图2港口数量与图3配送中心数量与2002,43(1/2):283297目标函数值关系目标函数值关系[5] WuT H, Low C, Bai J W. Heurist ic s ol ution s to mu ltt depotFig2 Relation of ob ject value Fig 3 Relation of ob ject valuelocatioN rou tin g pr ob lems[ J]. Computers and Operations Re-and ports numberand changing depots num besearch,2002,29(10):13931415可以看出,随着候选港口数量的增加.目标值呈[6 Syam ss. A model and met hodologies for the locat ion p rob lem下降趋势,说明可供选择的港口越多,求得最优解的with logist ical components[ J]. Computers and Operations Re机会越大,但本例中,当候选港口的数量增加到5个se arch,200)2,29(9):l173-1193时,目标值达到最小(实际被选中的港口为3个);候[7 Amiri A. Designing a distribution network in a suppl y chainsystem[ J]. European Jou rnal of O perat ional Research, 2004选配送中心数量的变化也呈相同的趋势,当候选配171(2):567576送中心数量达到9个时,目标值达到最小(实际被选8 G ena m, Syarif a. Hybrid genetic algorit hm for mult+ time pe-中的配送中心为8个);本实例的计算时间都在8sriod production/ distribution planning[ J1. Computers and Ir以内,虽然无法判断所求解为最优解,但从计算结果dustrial Engineering, 2005, 48(4): 799809来看,基本接近最优,因此可以认为本算法对于求解9工丰元,潘福全张丽霞等基于交通限制的路网最优路径算大规模问题也是有效和良好的法J.交通运输工程学报,2005,5(1):9295Wang Feng yuan, Pan Fuquan, Zhang Li xia, et al. Opti mal5结语path algorithm of road netw ork with traffic rest riction[ JIJourn al of Traffic and Trans port ation Engin eering, 2005, 5(1)本文将研究范围界定在商品从供应商到配送中9295.(in Ch ineseo1994-2012ChinaacAdemicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net
    2020-12-11下载
    积分:1
  • Altium PCB元件库
    Altium的PCB元件库,内容超多,且都是平常最有用的一些元器件,如表贴器件(FQP, QFN, SOP, TSOP, TSSOP, SON,...),USB,无线天线,等等。 我只在Altium Winter 09(DXP 2008)中装入使用。其他如99SE,DXP200?没有测试。网友下载后可将使用结果在留言中说明。谢谢!希望大家喜欢。 以下是其中的文件列表:(200多个文件)Axial Lead Diode.PcbLibBGA_Rect.PcbLibBGA_Sq_100P.PcbLibBGA_Sq_127P.PcbLibBGA_Sq_150P.PcbLib
    2020-12-01下载
    积分:1
  • 视频行人检测
    对视频中行人的检测算法,对图像的预处理,运动目标的是识别,跟踪
    2020-12-06下载
    积分:1
  • ucGUI人机界面(ucOS+ucGUI人机界面实验源码)
    ucOS+ucGUI人机界面实验源码 目前支持:2.4/2.8/3.5/4.3屏 但是不支持4.3寸电容屏的触摸,只支持电阻屏触摸。 如果您购买了4.3寸电容触摸屏,是无法在上面使用触摸屏的,但是可以显示。
    2020-12-09下载
    积分:1
  • 最小二乘法训练RBF神经网络
    最小二乘法训练RBF神经网络的源程序 能够运行
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 106174会员总数
  • 31今日下载