登录
首页 » Others » 蚁群算法求解旅行商最优路径问题

蚁群算法求解旅行商最优路径问题

于 2020-12-07 发布
0 167
下载积分: 1 下载次数: 0

代码说明:

利用MATLAB语言实现蚁群算法求解旅行商最优路径问题

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab_slam.zip
    【实例简介】激光雷达数据集,slam算法仿真,干货很多,建议认真学习。
    2021-11-26 00:37:35下载
    积分:1
  • 武汉大学 概率论与数理统计 期末试卷.pdf
    【实例简介】非常好的概率论与数理统计试卷,是武汉大学的期末试卷,对复习有很大的帮助,而且难度有一定的,十分有益!
    2021-12-05 00:37:25下载
    积分:1
  • 随机信号分析
    内含 随机信号分析-高新波 随机信号分析与处理-罗鹏飞 是随机信号处理的经典教材
    2020-12-03下载
    积分:1
  • 基于 Vision Assistant 的图像处理实用教.pdf
    本教程是基于视觉助手 2012 版创作的。因此附件中的脚本请考虑使用视觉助手 2012 版的打开或更高版本的如 2013 版打开。以作者几年的工作经验来看,视觉助手最近几年的 版本功能上差不太多。因此本教程可以适用于前面的旧版本,如 8.6、2009、2010、2011, 也可以适用于后面的新版本,如 2012、2013 版。本教程的部分理论知识翻译于 NI 视觉概念手册。如果需要查看相关的英文原著,可以 参考 NI 视觉概念手册(注意其中也有不少错误)。教程中相关原实例、应用方案,均源于作者多年工作中遇到的实际应用项目,具有一定 的参考价值。也许您会遇到某个相同的项目,如果能做成,那您的回报,将远远大于本书的 投入,因此本书是物有所值的。本教程最后一章与 LabVIEW 混合编程,因为包含了一些第三方的硬件在其中,并没有 就第三方硬件的动态链接库函数进行详细的说明,只是对如何调用这些函数进行了一些方法 上的说明。因为我们遇到的硬件可能会有很多种,不可能每种硬件的方法都拿来解释清楚, 希望大家能够学会举一反三。NI Vision 工具包里还包含了许多其它的函数,如各种训练函数,如模式匹配、OCR 训练, 或者一些辅助的功能函数,如环形耙子等。这些函数,在您学会了视觉助手后,并且能利用 视觉助手生成 VI 编写一定的图像处理软件时,回过头再来了解这些函数时,将变得非常简 单。因此建立读者从视觉助手开始,学习一些最常用的图像处理方式方法后,再去深入了解 一些其它的有帮助的方法,这样对于您的帮助可能是巨大的。NI 提供视觉助手的目的,也 是在于帮助工程人员能够快速的解决测试测量任务,而不是花大量的时间用于编写代码上。
    2020-12-01下载
    积分:1
  • 基于STM32的双向DC-DC变换器的设计与实现
    本系统主要由 BUCK 降压模块、BOOST 升压模块、测控模块、辅助电源模块组成。其中BUCK 降压模块和BOOST 升压模块的驱动选用具有波形互补的可编程芯片IR2104、电流采样选用TI 公司专用高边电流采样芯片INA282;测控模块采用低功耗单片机STM32 对输出电压、输出电流实现闭环PI 控制。系统可以实现:在充电模式下,充电电流在 1~2A范围内步进可调且步进值为 0.05A,电流控制精度 1.30%左右;充电电流变换率为 0.87%;充电效率可达到 97.11%,具有测量、显示充电电流以及过充保护功能。在放电模式下,放电效率可达到96.54%且电压能保持在 30V目录第一章绪论1.1课题背景·*······*···*·····*···‘1.2双向DC-D变换器的研究意义1121.3国内外研究和应用现状1.4论文主要的研究内容.第二章双向DG-DG变换器拓扑结构的硏究.34662.1双向DC-DG变换器的基本原理与类型2.2双向DC-DG变换器的电路拓扑2.3双向DCDC变换器方案的设计10第三章双向DC-DC变换器硬件电路分析及参数设计.3.1双向DG-DG变换器的硬件电路分析.…123.2BUCK-B00sT电路器件的选择及参数设计3.3电流采样电路分析及参数设计173.4 MOSFET管驱动电路设计183.5辅助电源设计.19第四章双向DG-DG变换器的软件设计4.1软件设计方法214.2主函数程序设计4.3按键模式的识别.224.4恒流恒压模式的设计……第五章双向DG-DG变换器调试、实验结果与分析255.1测试仪器∴255.2测试方法255.3测试实验数据5.4测试结果分析…27第六章总结与展望6.1总结286.2展望.28[参考文献]附录(一):项目课题获奖情况及总体实物图….31附录1.1项目课题获奖情况31附录1.2双向D-DC变换器的总体实物图,34附录(二)程序清单…..35第一章绪论1.1课题背景航天器由若下分系统组成,分为有效载荷和航天器平台两大类。有效载荷主要是直接执行特殊的航天任务,而航天器平台主要由航天器结构和服务与支持系统构成。服务与支持系统主要包括电源裝置、姿态控制裝置、轨道控制装置、无线电测控装置、数据保管等等。因此,电源分系统是极其重要的,它是航大器所有能源供给装置。若电源部分工作不止常,则整体就将失去作用,变为毫无用处,电源重量占航天器重量的15%~25%。分为化学电源、太阳电池电源和核电源三类。日前世界上90%以上的航天器都采用太阳能电池阵构成的光伏电源发电系统。主功率供电回路的额定电压(母线电压)三个等级:(1)低压—28V,适用功率等级:1200W(2)中压——42或50V,适用功率等级:200水平(3)高压—100V或以上,适用功率等级:4000V水平。载人飞船氿道运行高度为300~400Km,轨道周期约为9lmin,其中轨道最长,阴影吋间37min,最短光照时间54min。飞船屯源分系统组成部分如表1所表1飞船电源分系统组成电源名称电源类型配置舱段用途备注太阳电池阵-镉镍待发段、发射段、自主主电源推进舱蓄电池系统运行段向整船供电有留轨仁务需要时,飞留轨电源太阳电池镉都轨道舱留轨使用期间船配置留轨电源,否电池系统不配置返回/着陆返回、着陆、等待期旧锌银蓄电池组返回舱电源供电补充峰值功率、应急飞应急电源锌银蓄电池组推进舱行供电目前,我国的航天电源部分调节器主要依赖于从欧洲等国家进口,需要耗费巨资,对我国载人航天的航天器产生极其不利的影响。因此,具有自主知识产权的电源部分调节器的研制,具有很重要的意义和深远的影响1.2双向DDG变换器的研究意义在传统的太阳能电池阵构成的光伏电源发电系统,传统的蓄电池充、放电模块很难保证太阳能阵在太阳光线充足时产生多余的能量不会导致航天器的过热以及储能装置蓄电池组的过允电,而且功率密度点较大,成木高,系统结构相对复杂。太阳能光伏电源发电系统是将太阳能转换成电能的发电系统,它的主要部件是由太阳能电池组、太阳能控制器、储能装置蓄电池(组)和太阳跟踪控制系统组成。其特点是高可靠性、寿命长以及对环境不产生污染、能独立进行发电且并网运行,受到世界各国电网公司的喜欢,发展前景十分广阔。太阳电池的发电功率通过“分流调节”全部变换为母线功率,一部分直接给负毂供电,另一部分则通过“充电调节”变换为充电功率为储能装置蓄电池组充电;蓄电池组功率通过“放电调节”变换为母线功率。对太阳电池发电功率的使用优先级依次为供电、充电、分流。充电功率可以视作母线的可调负载。太阳能电池光伏电源发电系统工作原理如图1所示。正丹线充电控制放电调节负载太阳能电池太阳能电池分流控制蓄电池组充电阼供电阵负母线图1光伏电源发电系统工作原理双向DC-DC转换器是连接正负母线电压与储能系统(如储能装置蓄电池组)的关键,所以使转换器的效率变髙极其重要。本文提出了一种降低功耗,提高整机效率的方案,使得对双问DCDC转换器的探讨变得更加具有意义。1.3国内外研究和应用现状20世纪后期,太阳能电池阵-储能装置蓄电池组构成的光伏电源发电系统的休积和重量庞大,著名外国学者提出了一种基于BCK/B0OST双向DCDC直流转换器来代替原有光伏电源发电系统的允电、放电模块,从而实现电压的稳定20世纪90年代,中国工程院院士陈清泉教授将基于BUCK/ BOOST双向DC-DC变换器在电动车领域使用,同年,外国专家研制了用大功率的水冷式DC-DC变换器即基于BUCK/ BOOST双向DC-DC直流转换器来驱动电动车,由于基于BUCK/BO0ST双向DC-DC变换器的输入输出电压的忙负极相反,不适合在电动车上应用,因此,他提出了一种基于BUCK-BO0ST级联型的双向DC-DC变换器,变换器的电源输入端与电压输出端的负端共用。经过4年时间,美国著名大学-弗吉尼亚大学教授李泽元开始研究在燃料电池上双向DC-DC变换器的配套应用。由此可见,用于载人航天的航天器电源和电动车辆的技术更新对双向DC-DC变换器的发展具有巨大的推动作用,随着开关直流变换器技术即脉宽调制技术的实现,给双向DCDC变换器的发展带来了曙光。1994年,有一位著名的澳大利亚学者发表论文,总结出几种非隔离型双向DC-DC变换器拓扑结构,主要是在CM0S开关管上反向并联具有快速、低功耗的二极管,且在二极管上反并联CMOS开关管,从而构成非隔离方式的双向DC-DC变换器种类有:BUCK-B0OST变换器、BUCK/B0OST变换器、CUK变换器和SEPI-ZETA变换器2004年,由我国学者张方华博士对推挽正激移相式、级联式、正反激组合式双向DC-DC直流变换器做了深入的研究。提出∫很多新型的应川电路,研究∫其控制模型,采用PI补偿环节的单电压闭环实现了系统闭环稳定。双向DC-DC变换器的硏究是近年来开关电源技术研宄的一个热门话题。2006年梁永春博士探讨了由反激式并联输入、串联输出构成的反激逆变器,提出了种同步整流的控制方案,极大地简化了髙频链逆变器的控制,使得整流二极管的导通损耗大幅度降低,整个电源系统的效率提高到85.8%。1.4论文主要的研究内容要求:设计一种双向DC-DC变换器,实现电池组的充电、放电功能。系统结构如图2所示,电池组由5节18650型、容量2000~3000mAh的锂离子电池串联组成。所用电阻阻值误差的绝对值不大于5%辅助电源测控电路3BS1 Rs-5Q2电双向DCDC池变换电路组RL=302直流稳压电源图2电池储能装置结构框图1.基本要求接通S、S3,断开S2,将装詈设定为充电模式(1)U2=30V条件下,实现对电池恒流充电。保障充电时电流l在1~2A范围内能够步进可调,步进值应≤0.1A,电流的控制精度≥5%。(2)设定1=2A,调整直流稳压屯源输出电压,使U2在2436V范围内变化时,要求充电电流I的变化率不大于1%(3)设定l1=2A,在U2=30V条件下,变换器的效率n1≥90%(4)测量并显示充电电流,在I-1~2A范围内测量精度不低于2(5)具有过充保护功能:设定l1=2A,当U1超过阈值U=24±0.5V时,停止充电。2.发挥部分(1)断开S1、接通S2,将装置设定为放电模式,保持U2=30±0.5V,此时变换器效率n2≥95%(2)接通S1、S2’断开S3’调整直流稳压电源输出电压,使直流电源电4压U在32~38V范围内变化时,双向DC-DC变换器能够自动切换工作模式即可自动切换充放电模式并保持输出电压U2=30±0.5V。(3)在满足要求的前提下简化结构、减轻重量,使双向DC-DC变换器、测控电烙与辅助电澒三部分的总重量不大于500g。(4)其他第二章双向Dc-D变换器拓扑结构的研究2.1双向DCDc变换器的基本原理与类型2.1.1双向DC-DG变换器的基本原理双向DC-DC变换器是把育流电压转换成另一个数值的电压,它是由软件控制导通的CW0S开关管、储能电感、续流二极管、具有滤波作用的电容、负毂等构成的,通过具有滤波功能的负载电路和直流电压时而使开关管时而接通或者时而关断,仗得另一端即负载上得到另一个直流电压2.1.2D0DG变换器的类型目前,国内外将双向DCDC变换器的拓扑结构主要划分为非隔离式和隔离式两大类。非隔离型拓扑的主要有:BUCK降压式、 BOOST升压式、BUCK- BOOST升降压型等拓扑。非隔离型拓扑如图3所示。隔离型拓扑的主要有:止激、反激、推挽、半桥、全桥型变换器(1)隔离型变换DYYYCD(a)BUCK变换器拓扑(b) BOOST变换器拓扑DL(c)BUCK- BOOST变换器拓扑图3非隔离型变换器拓扑以最基木的BUCK降压式变换器和BO0ST升压式变换器为例,介绍其工作原理。BUCK降压式变换器:当CMOS开关管Q接通时,电源Vin通过电感L给电容C充电;当开关管断开时,电感L通过快速、低功耗二极管D续流,电压逐渐降低。此时,电容上的电流由正逐渐降为零,最后变成负向,进而使开关管又一次导通,使得电感上电流增加。其储能电感L上电流波形如下图4所示tImar1-min(a)BUCK电感电流连续时波形(b)BUCK电感电流断续时波形图4BUCK电感电流波形BO0ST升压式变换器:当开关管Q导通吋,电源向电感L储能,电感L电流增加,负载由电容C供电;当开关管Q关断时,电感电流减小,电感电势与输入电压叠加,迫使二极管D导通,一起向负载供电,并同时向电容C充电。其电感电流波形如图5所小7
    2020-12-05下载
    积分:1
  • 基于matlab的yalmip+cplex的二阶锥SOCP-OPF的IEEE33算例潮流.zip
    【实例简介】请注意!!!!本资料自2021.10.15更新了OLTC、DG的问题,解决了同学们提出的一些问题错 基于算例IEEE33还有PG69,使用CPLEX+YALMIP进行二阶锥松弛建模的多时间断面潮流,内容丰富,包含本人所有的复现资料,有主动管理OLTC,CB,SVC,ESS等,配电网重构,综合负荷,注释绝对清晰,程序易懂,可改写能力强,适用小白。复现自《主动配电网最优潮流研究及其应用实例》-高红均,约束什么都一样。 有主动配电网二阶锥最优潮流的所有学习资料,看完我这个,绝对不会有这方面的问题。运行问题可以帮忙解决!!!可答疑
    2021-12-15 00:41:55下载
    积分:1
  • Xilinx_FPGA__4层板6层板设计
    【实例简介】基于FPGA的四层六层PCB板的设计,焊盘过孔尺寸等布线规则,信号完整性分析、仿真以及电路板的设计策略和布线策略。
    2021-11-19 00:38:15下载
    积分:1
  • 基于LMS 算法的多麦克风降噪
    武汉理工大学 信息处理课设 基于LMS 算法的多麦克风降噪 给定主麦克风录制的受噪声污染的语音信号和参考麦克风录制的噪声,实现语音增强的目标,得到清晰的语音信号。2007控制科学与工程全国博士生学术论坛2007年8月其中日为语音信号与麦克风阵列所在平面的夹角,d为麦克风间距,c为声音传播速度,f为信号采样率。固定波束形成器通过延时求和单元产生参考语音信号y(n),y(n)与y(m)分别代表期望语音信号与噪声信号。y,(n)4x(m)=y(m)+y/(m(3)信号通过阻塞矩阵产生噪声参考信号用来估计波束形成输出信号中的噪声成分。选取B使其中任意行向量之和为零,即任意行向量线性无关。为了进一步降低噪声参考信号中的语音泄漏,参考文献“提出了用自适应阻塞矩阵替代固定阻塞矩阵的方法。ynly2nMM-[nJ]=BLun], u2n],umn自适应噪声抵消器ANC通过对输入噪声参考信号进行自适应滤波处理抵消了参考信号y,(m)中的噪声成分,得到增强的语音信号。em]=y[m-∑nnl3LMS自适应算法及改进31LMS自适应算法GSC架构中的自适应噪声抵消器ANC需要用增强的语音信号作为反馈对滤波器权值进行自适应更新。很多自适应算法基于LMS及其改进形式, Clark提出的块LMS算法使得滤波器的自适应逐块更新而非传统LMS滤波器逐点更新4, HOSHUYAMA、 Kellermann分别提出的基于范数约束自适应算法的权值更新,以及频域无约束实现。这些算法基本结构如图2所示y(n-1)(n-L+1)wo(ne(ny/(n)图2自适应横向滤波器结构图图2为图1中的M-1路L阶多通道自适应噪声对消器中某一路的展开形式,其抽头输入向量为[ym]yn-]yn-L+1],对应的抽头权向量为wmwn]w-]。LMS算法的梯度向量通过G2007控制科学与工程全国博士生学术论坛2007年8月计算抽头输入相关矩阵R和抽头输入与期望响应间互相关向量p得到VJ(n)=-2p+2Rv(m),将R和p的瞬态估计R(n)=y(m)y"(n),p(n)=y(n)y/(m)代入,得出梯度向量的瞬态估计:VJ(n)=-2y(n)y, (n+2y(n)y"(n)w(n)进而推出LMS算法权值更新公式为w(n+1)=w(n)+uy(n)Ly(n)-y"(n)w(n)32基于稳态噪声的自适应算法改进考查图2中具有L个抽头权值的LMS算法,抽头权值与抽头输入一一对应。在传统的逐点更新LMS算法中,每计算一个输出需要L次乘法,而更新一次抽头权值也需要L次乘法,故每次迭代需要2L次乘法。对于L个输出样值,所需要的乘法次数为2次。针对传统LMS算法复杂度高的缺点,Ca利用离散傅立叶变换在频域完成滤波器系数的自适应提出了快速块LMS箅法, Ann Spriet在此基础上通过改进LMS算法中的步长矩阵进一步降低了算法复杂度以上LMS算法改进均在图2的横向滤波器架构下进行,即抽头权值与抽头输入一一对应。考虑到稳态噪声的特点,本文提出了“一对多”的滤波器抽头权值更新算法,即L个输入样值共享一个滤波器权值。如此M路多麦克风语音增强系统中的ANC滤波器权值便由(M-1)×L维矩阵W[n=[w[η],n2[rl…wM-[r],其中H[n]=[won],w1[nw-r]退化为(M-1)×1维向量n]=[wryw2n],M-m]j。改进算法权值更新公式为w(n+D)=w(n)+uBu(nu"(n)[A-Bw(n)其中B为阻塞矩阵,A为固定波束形成器,为步长,U(n)为LxM维输入信号。与传统的“一对一”LMS滤波器相比,“一对多”结构在降低算法复杂度的同时,牺牲了前者具有的时间域严格对齐的特性。为降低这一缺点对系统降噪性能的影响,应在频域进行噪声对消,改进算法的多麦克风语音增强系统结构如图3所示。e(n)(n)B Yn图3改进的噪声消除算法结构图3中用虚线框表示可选滤波器权值w。由于实际应用中语音泄漏的存在,在参考语音信号中加入v能有效补偿由语音泄漏引起的语音崎变⑩。实际应用中由于阻塞矩阵输出不可避免的存在语音泄4642007控制科学与工程全国博士生学术论坛2007年8月漏,为了避免期望信号的消除,箅法中加入语音活动检测单元89,当前帧为噪声时更新滤波器系数,当前帧为语音信号时,滤波器系数不变33算法复杂度比较表1列出了本文算法与其他几种噪声消除算法之间算法复杂度的比较。我们采用实数乘法运算次数作为衡量算法复杂度的标准,每个N点傅立叶变换或其反变换需要Mlog2N次实数乘法运算。传统逐点LMS算法在时间域逐点更新滤波器权值。快速块LMS算法与多通道 Wiener算法通过FFT快速循环卷积特性实现LMS中的线性卷积运算,从而降低算法复杂度。本文算法在此基础上通过改进滤波器抽头权值更新算法进一步降低运算复杂度。由表1可见,当麦克风数目M4,L=32时,本文算法与多通道 Wiener滤波算法相比,R(3M+2)FT+8ML+2M63M+2)+4M2+6M_172(M+2)FFT+2ML6(M+2)+M40°文算法运算量降低了4倍左右。表1算法复杂度比较算法名称算法复杂度传统逐点LMS算法2ML快速块LMS算法(41(3M+2)FFT+16ML多通道 Wiener滤波算法53M+2)FFT+8M2+12M本文提出的算法(M+2)FF+2M…图4a)麦克风采集到的原始信号b)采用快速块LMS算法处理后的信号[4]c)采用多通道 Wiener滤波算法[10处理后的信号d采用本文算法处理后的信号4实验结果与分析实验采用线性排列的4个间距为4厘米的麦克风组成的语音采集系统,采样率为44KHZ,说话人位于阵列的正前方,噪声为稳态噪声,其与麦克风阵列法线所夹角度为50度。图4比较了麦克风采集到的信号、采用本文算法处理后的语音信号以及采用其他主流语音增强算法处理后的语音信号的时域波形。由4652007控制科学与工程全国博士生学术论坛2007年8月图4可见采用本文算法处理的语音信号背景噪声有明显降低。为进一步分析各种语音增强算法消噪能力,分别按照公式9计算各算法输出信号的信噪比,其中k代表帧序列号,N代表噪声,Y代表输出语音信号,L为帧长。∑(Y(k,2)2-|N(k,)SNRou(E)=10 log,o∑1MV6)图5釆用各箅法输出信号信噪比与输入信号信噪比之差来衡量噪声降低程度。由图5看出,在本文算法基础上在参考通道中加入可选滤波器权值能够进一步消除背景噪声,提高输出信噪比。苯文鲜法(使用权值w)木文好法未使用权值y块LMS算法Frame Number图5信噪比增强对比5结论本文在稳态噪声的前提下,提出了一种基于广义旁瓣消除器架构具有低算法复杂度的噪声消除算法,该算法通过改进LMS滤波器权值更新算法来达到降低算法复杂度的目的。实验结果证明,在稳态噪声环境下,该方法降噪性能优于传统LMS算法,同时有效降低了传统算法的算法复杂度。在现实生活中一些存在稳态噪声的场合,如发动机舱、厂房等该算法具有很强的实用价值。参考文献[U]LJ. Griffiths and C. W. Jim []. "An altemative approach to linearly constrained adaptive beamforming, IEEE Trans. AntennasProcess., voL. AP-30, no. I, pp 27-34, Jan. 1982.[2]0. Hoshuyama, A Sugiyama, and A Hirano [J]. "A robust adaptive beamformer for microphone arrays with a blocking matrixusing constrained adaptive filters, "IEEE Trans. Signal Process. vol 47, pp. 2677-2683, Oct. 1999[3]W. Herbordt and W Kellermann [J]. " Frequency-domain integration of acoustic echo cancellation and a generalized sidelobecanceller with improved robustness, "Eur. Trans. Telecommun., voL. 13, no 2, pp 123-132, Mar. -Apr. 2002.[4]Clark. G.A., S K Mitra, and S.R. Parker [J]. Block implementation of adaptive digital filters, "IEEE Trans. Circuits Syst,voL. CAS-28,PP584-592.1981.[5]Ann Spriet, Jan Wouters, Simon Doclo, Marc Moonen, "Frequency-Domain Criterion for the Speech Distortion WeightedMultichannel Wiener Filter for Robust Noise Reduction", Ap: //ftp. esat kuleuven. ac, be/pub/SISTA/doclo/reports/04-240 pdf[6JH. Buchner, J. Benesty, W. Kellermann J]. Generalized multichannel frequencydomain adaptive filtering: efficient realizationand application to hands free speech communication", Signal Processing 85(3), PP 549-570. 2005[7]W.Herbordt and W. Kellermann [A]. " Efficient Frequency-domain realization of robust generalized sidelobe cancellers", IEEE4662007控制科学与工程全国博士生学术论坛2007年8月Fourth workshop, multimedia signal Processing, PP. 377-382 2001[8]S. Van Gerven, F. Xie [J. "A Comparative Study of Speech Detection Methods", Proc. EUROSPEECH, VoL 3, Rhodos, Greecepp.1095-1098.1997[9]J Sohn, N.S.Kim, W Sung [] A Statistical Model-Based Voice Activity Detection", IEEE Signal Processing Lett. 6(1)1-31999[10]A Spriet, M. Moonen, J Wouters[]. Robustness Analysis of Multi-channel wiener Filtering and generalized sidelobeCancellation for Multi-microphone Noise Reduction in Hearing Aid Applications", IEEE Trans. Speech and Audio Processing, 13(4)PP.487-503.2005[IlJFerrara, E R r [] Fast implementation of LMS adaptive filters", IEEE Trans. Acoust. Speech Signal Process,voL.ASSP-28pp474-475.1980[12]S. Doclo and M. Moonen[J]. " Multi-microphone noise reduction using recursive GSVD-based optimal filtering with ANCpostprocessing stage, "IEEE Trans. Speech Audio Process., vol. 13, no. 1,Pp 53-69, Jan. 2005[13]Philipos C Loizou [J]. "Speech Enhancement Based on Perceptually Motivated Bayesian Estimators of the MagnitudeSpectrum" IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL 13, NO 5, Pp.857-869, 2005种新的基于稳态噪声的噪声消除算法旧WANFANG DATA文献链接作者:董鹏宇,朱子元,林涛作者单位:同济大学超大规模集成电路研究所,上海20009本文链接http://d.g.wanfangdata.comcn/confereNce6584700.aspx
    2020-11-28下载
    积分:1
  • STM32 外部中断触发定时器 详细代码(译通过)
    该资源为本人自己研究出来 可能对于有些人都会使用 但改代码编写正式 注释详细 且已编译通过 运行正常 有利于初学者和有疑问者参考学习STM32的外部中断和定时器的使用 可以直接拿过来使用 采用开发板为 STM32F103C8 编译环境MDK Keil4
    2021-05-06下载
    积分:1
  • matlab sift特征提取
    本人也是刚刚学习,代码亲字试过,希望对大家有帮助,大家一起学习交流,我也是从别人那考来的代码
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载