登录
首页 » matlab » 雷达matlab仿真,波束形成,角度测量,跟踪等等

雷达matlab仿真,波束形成,角度测量,跟踪等等

于 2021-02-19 发布 文件大小:363KB
0 367
下载积分: 1 下载次数: 14

代码说明:

  波形设计算法,阵列信号处理等相关知识的介绍仿真等(Introduction and Simulation of waveform design algorithm, array signal processing and other related knowledge)

文件列表:

23\angle_delta.m, 2196 , 2014-05-15
23\angle_k.m, 3591 , 2014-05-19
23\angle_k2.m, 1322 , 2014-04-21
23\data_Position_RMSE_5261942.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261945.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261946.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261953.xls, 108544 , 2014-05-26
23\data_Position_RMSE_526202.xls, 79872 , 1990-05-29
23\data_Position_RMSE_5291628.xls, 57856 , 2014-05-29
23\data_Position_RMSE_529165.xls, 57856 , 2014-05-29
23\data_Position_RMSE_731017.xls, 62976 , 2014-07-03
23\data_Position_RMSE_731714.xls, 62976 , 2014-07-04
23\data_Position_RMSE_741136.xls, 62976 , 2014-07-06
23\data_Position_RMSE_74842.xls, 62976 , 2014-07-04
23\data_SNR_RMSE.xls, 17920 , 2014-05-16
23\data_SNR_RMSE_0519.xls, 17920 , 2014-05-19
23\data_SNR_RMSE_0520.xls, 17920 , 2014-05-20
23\data_SNR_RMSE_0520_a.xls, 17920 , 2014-05-21
23\data_SNR_RMSE_0520_b.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52216.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52616.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261643.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261649.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261652.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261655.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261659.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261713.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261716.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261719.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526172.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261723.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261726.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261729.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261733.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261736.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261739.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261743.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261746.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261749.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261753.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261756.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261759.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526176.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526179.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261813.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261816.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261819.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261823.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526183.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526186.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526189.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5291713.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291717.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291725.xls, 17920 , 2014-05-29
23\dbf_test_1.mat, 451 , 2014-06-16
23\dbf_test_2.mat, 453 , 2014-06-16
23\dbf_test_3.mat, 452 , 2014-06-16
23\Echo_MIMO_PCM.m, 3714 , 2014-04-30
23\echo_pa_hf.m, 7554 , 2014-04-28
23\echo_pcm_static.m, 1786 , 2014-04-21
23\error_alphar2013.m, 5125 , 2014-06-16
23\error_alphat2013.m, 3312 , 2013-06-07
23\error_angle.m, 367 , 2013-06-02
23\error_d.m, 3963 , 2014-06-16
23\error_d2013.m, 6414 , 2014-04-09
23\error_v2013.m, 4177 , 2013-06-08
23\gen_base.m, 2497 , 2014-04-18
23\Gen_st_vector0506.m, 1725 , 2014-04-28
23\Gen_st_vector0524.m, 2123 , 2014-04-28
23\Gen_st_vector_cs.m, 2139 , 2014-05-14
23\hs_err_pid5552.log, 23348 , 1990-05-29
23\main_23.m, 57186 , 2014-06-16
23\main_23_0616.m, 60040 , 2014-07-04
23\matching10.m, 1198 , 2013-06-02
23\matching10_2013.m, 469 , 2014-05-13
23\monoPA.m, 1243 , 2014-05-30
23\monopulse_vec.m, 868 , 2014-05-15
23\multi_par.m, 3395 , 2014-05-30
23\mydata.xls, 17408 , 2014-04-30
23\papc-16-128.mat, 275 , 2013-06-02
23\papc-16-256.mat, 352 , 2013-04-18
23\rdbf.m, 1219 , 2014-06-16
23\rExtract1.m, 594 , 2014-06-16
23\rExtract2.m, 294 , 2013-06-02
23\rExtract20130526.m, 595 , 2013-06-07
23\sigma_thetar.m, 0 , 2014-05-20
23\SNR_RMSE0507.fig, 2702 , 2014-05-07
23\sypc-16-1024.mat, 3583 , 2013-06-02
23\sypc-16-2048.mat, 6959 , 2013-06-02
23\sypc-16-256.mat, 1060 , 2013-06-02
23\Target_Echo_PCM.m, 5266 , 2014-04-21
23\testdata2.xls, 16896 , 2014-04-30
23\transmit_2013.m, 2401 , 2014-05-14
23\t_mtd.m, 707 , 2014-06-16
23, 0 , 2014-07-06

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Hands-on programming with R
    说明:  本书精心策划了三个虚拟项目,将数据科学家必需的专业技能融合其中,教会读者如何将数据存储到计算机内存中,如何在必要的时候转换内存中的数据值,如何用R编写自己的程序并将其用于数据分析和模拟运行。读者将跟随世界一流的RStudio培训师掌握宝贵的编程技能,并借助这些技能成为优秀的数据科学家。(Introduction to R Language)
    2019-05-30 15:04:30下载
    积分:1
  • 算法
    包含很多知名算法实现,支持向量机,决策树,粗糙集,贝叶斯分类器等,适合学术研究,短评论意见挖掘,文本分类等。
    2022-06-03 05:40:28下载
    积分:1
  • spider-(2)
    应用python编写的百度指数新闻爬取代码(baiduindex spider)
    2017-03-15 21:45:43下载
    积分:1
  • hyglrpf
    零件切割问题 回溯算法的实现, 给定一块宽度为W的矩形板,矩形板的高度不受限制,现需要从板上分别切割出n个高度为hi,宽度()
    2018-03-15 11:17:34下载
    积分:1
  • 40289243
    这是C语言中的难点的一些算法,其中包括用C实现的班级成绩管理,用C实现的排序算法等()
    2018-01-08 21:27:54下载
    积分:1
  • WOA
    1基于MapReduce的K-Means聚类算法, 2基于MapReduce的分类算法 3MapReduce的频繁项集挖掘算法(1 K-Means clustering algorithm based on MapReduce, 2 classification algorithm based on MapReduce 3 Mining Algorithm for frequent itemsets based on MapReduce)
    2018-07-11 17:26:13下载
    积分:1
  • chapter3
    周志华 机器学习 第三章 python 参考答案(Zhou Zhihua machine learning third chapter Python reference answer)
    2018-06-07 21:59:46下载
    积分:1
  • 频繁项集算法
    频繁项集挖掘算法,能在大量局部特征中发现频繁空间配置,这些空间配置可以作为词语,加入到特征包中进行分类,实现图像分类。
    2022-03-23 21:38:47下载
    积分:1
  • 最近邻分类代码
    在linux 下C语言实现最近邻聚类算法,工程已经使用(near K neighbor cluster)
    2017-12-21 16:45:51下载
    积分:1
  • 2555333
    牛顿插值法,选择插值节点文件,有点小麻烦()
    2018-03-15 20:34:53下载
    积分:1
  • 696518资源总数
  • 105958会员总数
  • 18今日下载